基于词袋的HEp-2细胞图像分类方法

Shahab Ensafi, Shijian Lu, A. Kassim, C. Tan
{"title":"基于词袋的HEp-2细胞图像分类方法","authors":"Shahab Ensafi, Shijian Lu, A. Kassim, C. Tan","doi":"10.1109/I3A.WORKSHOP.2014.11","DOIUrl":null,"url":null,"abstract":"In this work we present an automatic HEp-2 cell image classification technique that exploits different spatial scaled image representation and sparse coding of SIFT and SURF features. The proposed method is applied on the ICIP2013 dataset in the I3A workshop, which is held in ICPR 2014 conference. Experiments are designed to capture the accuracies on training set with cross validation method. Additionally, the prior information on positive and intensity levels of cells are used to boost the overall performance. Finally, different number of iterations on learning the dictionary is studied to find the optimum one.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A Bag of Words Based Approach for Classification of HEp-2 Cell Images\",\"authors\":\"Shahab Ensafi, Shijian Lu, A. Kassim, C. Tan\",\"doi\":\"10.1109/I3A.WORKSHOP.2014.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present an automatic HEp-2 cell image classification technique that exploits different spatial scaled image representation and sparse coding of SIFT and SURF features. The proposed method is applied on the ICIP2013 dataset in the I3A workshop, which is held in ICPR 2014 conference. Experiments are designed to capture the accuracies on training set with cross validation method. Additionally, the prior information on positive and intensity levels of cells are used to boost the overall performance. Finally, different number of iterations on learning the dictionary is studied to find the optimum one.\",\"PeriodicalId\":103785,\"journal\":{\"name\":\"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I3A.WORKSHOP.2014.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.WORKSHOP.2014.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

在这项工作中,我们提出了一种自动HEp-2细胞图像分类技术,该技术利用不同的空间尺度图像表示和SIFT和SURF特征的稀疏编码。该方法在ICPR 2014会议I3A研讨会上对ICIP2013数据集进行了应用。实验采用交叉验证的方法来获取训练集上的准确率。此外,关于细胞的阳性和强度水平的先验信息被用来提高整体性能。最后,研究了不同迭代次数的字典学习,找到最优的字典。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bag of Words Based Approach for Classification of HEp-2 Cell Images
In this work we present an automatic HEp-2 cell image classification technique that exploits different spatial scaled image representation and sparse coding of SIFT and SURF features. The proposed method is applied on the ICIP2013 dataset in the I3A workshop, which is held in ICPR 2014 conference. Experiments are designed to capture the accuracies on training set with cross validation method. Additionally, the prior information on positive and intensity levels of cells are used to boost the overall performance. Finally, different number of iterations on learning the dictionary is studied to find the optimum one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs A Segmentation Method for Bone Marrow Cavity Imaging Using Graph Cuts Class-Specific Hierarchical Classification of HEp-2 Cell Images: The Case of Two Classes HEp-2 Cell Image Classification with Convolutional Neural Networks A Bag of Words Based Approach for Classification of HEp-2 Cell Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1