考虑损耗模型的SCO2压缩机性能评价

Yiting Huang, Tong Wang
{"title":"考虑损耗模型的SCO2压缩机性能评价","authors":"Yiting Huang, Tong Wang","doi":"10.1115/fedsm2020-20230","DOIUrl":null,"url":null,"abstract":"\n Centrifugal compressor is one of the key components in the Super-critical carbon dioxide (SCO2) Brayton cycle process, its performance prediction under variable operating conditions are concerned a lot with consideration of the unique of SCO2 properties. At the same time, the general techniques, including numerical simulation, test, and theoretical analysis with the loss models, are applied to evaluate the compressor performance. In addition with numerical analysis on the performance of the compressor, the flow loss models from air compressor were studied and extended the application to the SCO2 compressors, including incidence loss, blade loading loss, passage flow loss, tip clearance loss, mixing loss, disk friction loss, vaneless diffuser loss. All of these models were investigated to get the performance of a SCO2 compressor. The CO2 quality was got from the multipurpose NIST REFPROP 9.0 (NiST) which is based on Span and Wagner equation of state. The quality was added in the numerical simulation process. Besides, the passage flow loss factor has been modified to get more accurate theoretical performance prediction method for SCO2 compressor. The predicted performance map was compared to the numerical results, and the comparison results proved that, the combination of the loss models provided the similar results as those from the numerical simulation. For the SCO2 centrifugal compressor, the passage flow loss covers the most part among all the compressor flow losses. The value of the passage flow loss factor applied in the theoretical performance prediction method ranges between 0.008∼0.025, which is higher than that for air. Finally, the performance evaluation by improved loss models at different compression starting points were compared with that by the numerical results, it was found that, closer to the critical point would make the passage flow loss increase a lot, which may even exceed its rational range and the produced loss would be beyond expectation. This might be the reason for the low efficiency of SCO2 compressor in the practical working conditions.","PeriodicalId":103887,"journal":{"name":"Volume 1: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance Evaluation for SCO2 Compressor With Loss Models Consideration\",\"authors\":\"Yiting Huang, Tong Wang\",\"doi\":\"10.1115/fedsm2020-20230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Centrifugal compressor is one of the key components in the Super-critical carbon dioxide (SCO2) Brayton cycle process, its performance prediction under variable operating conditions are concerned a lot with consideration of the unique of SCO2 properties. At the same time, the general techniques, including numerical simulation, test, and theoretical analysis with the loss models, are applied to evaluate the compressor performance. In addition with numerical analysis on the performance of the compressor, the flow loss models from air compressor were studied and extended the application to the SCO2 compressors, including incidence loss, blade loading loss, passage flow loss, tip clearance loss, mixing loss, disk friction loss, vaneless diffuser loss. All of these models were investigated to get the performance of a SCO2 compressor. The CO2 quality was got from the multipurpose NIST REFPROP 9.0 (NiST) which is based on Span and Wagner equation of state. The quality was added in the numerical simulation process. Besides, the passage flow loss factor has been modified to get more accurate theoretical performance prediction method for SCO2 compressor. The predicted performance map was compared to the numerical results, and the comparison results proved that, the combination of the loss models provided the similar results as those from the numerical simulation. For the SCO2 centrifugal compressor, the passage flow loss covers the most part among all the compressor flow losses. The value of the passage flow loss factor applied in the theoretical performance prediction method ranges between 0.008∼0.025, which is higher than that for air. Finally, the performance evaluation by improved loss models at different compression starting points were compared with that by the numerical results, it was found that, closer to the critical point would make the passage flow loss increase a lot, which may even exceed its rational range and the produced loss would be beyond expectation. This might be the reason for the low efficiency of SCO2 compressor in the practical working conditions.\",\"PeriodicalId\":103887,\"journal\":{\"name\":\"Volume 1: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2020-20230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

离心式压缩机是超临界二氧化碳(SCO2)布雷顿循环过程中的关键部件之一,考虑到SCO2特性的独特性,其变工况下的性能预测备受关注。同时,运用数值模拟、试验和损失模型理论分析等通用技术对压缩机性能进行了评价。在对压气机性能进行数值分析的基础上,研究了空压机的流动损失模型,并将其推广应用于SCO2压气机,包括射角损失、叶片负荷损失、通道流动损失、叶尖间隙损失、混合损失、盘摩擦损失、无叶扩压器损失。对所有这些模型进行了研究,以获得SCO2压缩机的性能。CO2质量由基于Span和Wagner状态方程的多用途NIST REFPROP 9.0 (NIST)计算得到。在数值模拟过程中加入了质量。此外,对通道流动损失因子进行了修正,得到了更为准确的SCO2压缩机性能理论预测方法。将预测的性能图与数值结果进行了对比,对比结果表明,两种损失模型组合后得到的结果与数值模拟结果相似。对于SCO2离心式压缩机,通道流动损失占压缩机流动损失的大部分。理论性能预测方法中应用的通道流动损失系数在0.008 ~ 0.025之间,比空气的损失系数高。最后,将改进的损失模型在不同压缩起点下的性能评价与数值结果进行对比,发现越靠近临界点,通道流动损失会增加很多,甚至可能超出其合理范围,产生的损失会超出预期。这可能是SCO2压缩机在实际工况下效率较低的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Evaluation for SCO2 Compressor With Loss Models Consideration
Centrifugal compressor is one of the key components in the Super-critical carbon dioxide (SCO2) Brayton cycle process, its performance prediction under variable operating conditions are concerned a lot with consideration of the unique of SCO2 properties. At the same time, the general techniques, including numerical simulation, test, and theoretical analysis with the loss models, are applied to evaluate the compressor performance. In addition with numerical analysis on the performance of the compressor, the flow loss models from air compressor were studied and extended the application to the SCO2 compressors, including incidence loss, blade loading loss, passage flow loss, tip clearance loss, mixing loss, disk friction loss, vaneless diffuser loss. All of these models were investigated to get the performance of a SCO2 compressor. The CO2 quality was got from the multipurpose NIST REFPROP 9.0 (NiST) which is based on Span and Wagner equation of state. The quality was added in the numerical simulation process. Besides, the passage flow loss factor has been modified to get more accurate theoretical performance prediction method for SCO2 compressor. The predicted performance map was compared to the numerical results, and the comparison results proved that, the combination of the loss models provided the similar results as those from the numerical simulation. For the SCO2 centrifugal compressor, the passage flow loss covers the most part among all the compressor flow losses. The value of the passage flow loss factor applied in the theoretical performance prediction method ranges between 0.008∼0.025, which is higher than that for air. Finally, the performance evaluation by improved loss models at different compression starting points were compared with that by the numerical results, it was found that, closer to the critical point would make the passage flow loss increase a lot, which may even exceed its rational range and the produced loss would be beyond expectation. This might be the reason for the low efficiency of SCO2 compressor in the practical working conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Tracking Velocimetry in Noisy Environment Experimental Study of Evaporation Frictional Pressure Drop in Horizontal Enhanced Tube Several Modifications to Improve Numerical Stability of Leishmen-Beddoes Dynamic Stall Model A Comparison of the Flow Structure in a Normal Triangular Tube Array Obtained Based on the SFV Technique and on a CFD Analysis Volumetric Three-Componential Velocity Measurements (V3V) of Flow Structure Behind Mangrove-Root Type Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1