包括气候变化对海上和陆上海洋设计标准的影响,以确保资产稳健性

Alison K. Brown, A. Stephens, B. Rabb, Richenda K. Connell, J. Upton
{"title":"包括气候变化对海上和陆上海洋设计标准的影响,以确保资产稳健性","authors":"Alison K. Brown, A. Stephens, B. Rabb, Richenda K. Connell, J. Upton","doi":"10.1115/omae2019-95205","DOIUrl":null,"url":null,"abstract":"\n While a significant amount of attention surrounding climate change has focused on mitigation of the causes, there is growing interest and need to adapt to physical climate change impacts which are already being experienced and in anticipation of future changes. Changes in climate have the potential to create hazards in the oil and gas sector although vulnerabilities to these changes are often specific to asset types. Preparedness for climate change can help to reduce damaging effects from acute as well as chronic climate changes. This paper focuses on a simple approach developed to ensure that climate change is included in engineering design, by considering climate change risk and the uncertainty inherent in future projections of climate change into design requirements. It involves using the best available climate change data and an understanding of the relationships between asset performance and environmental (climate-related) conditions. The risk level associated with climate change for a specific asset is determined by consideration of the severity and confidence level of the climate change hazard, the exposure of the asset to the hazard, the vulnerability of the exposed asset to the hazard and the capacity of the asset to adapt to the hazard. The method considers the risk levels, the selection of climate model data, the ‘natural variability’ baseline period to be applied to the climate change data, the climate change model validation, the asset life time and specifically how to modify metocean design criteria to account for climate change to ensure both the ‘start of life’ criteria (typically derived from observed and hindcast data) and ‘end of life’ criteria (including an estimate for the impact of climate change at the end of the asset life) meet the required annual probability of exceedance.","PeriodicalId":124589,"journal":{"name":"Volume 7B: Ocean Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Including the Impact of Climate Change in Offshore and Onshore Metocean Design Criteria to Ensure Asset Robustness\",\"authors\":\"Alison K. Brown, A. Stephens, B. Rabb, Richenda K. Connell, J. Upton\",\"doi\":\"10.1115/omae2019-95205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n While a significant amount of attention surrounding climate change has focused on mitigation of the causes, there is growing interest and need to adapt to physical climate change impacts which are already being experienced and in anticipation of future changes. Changes in climate have the potential to create hazards in the oil and gas sector although vulnerabilities to these changes are often specific to asset types. Preparedness for climate change can help to reduce damaging effects from acute as well as chronic climate changes. This paper focuses on a simple approach developed to ensure that climate change is included in engineering design, by considering climate change risk and the uncertainty inherent in future projections of climate change into design requirements. It involves using the best available climate change data and an understanding of the relationships between asset performance and environmental (climate-related) conditions. The risk level associated with climate change for a specific asset is determined by consideration of the severity and confidence level of the climate change hazard, the exposure of the asset to the hazard, the vulnerability of the exposed asset to the hazard and the capacity of the asset to adapt to the hazard. The method considers the risk levels, the selection of climate model data, the ‘natural variability’ baseline period to be applied to the climate change data, the climate change model validation, the asset life time and specifically how to modify metocean design criteria to account for climate change to ensure both the ‘start of life’ criteria (typically derived from observed and hindcast data) and ‘end of life’ criteria (including an estimate for the impact of climate change at the end of the asset life) meet the required annual probability of exceedance.\",\"PeriodicalId\":124589,\"journal\":{\"name\":\"Volume 7B: Ocean Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

虽然围绕气候变化的大量注意力集中在减轻其原因上,但人们越来越关注和需要适应已经经历的和预计未来变化的气候变化的物理影响。气候变化有可能给油气行业带来危害,尽管对这些变化的脆弱性通常是特定于资产类型的。为气候变化做好准备有助于减少急性和慢性气候变化的破坏性影响。本文重点介绍了一种简单的方法,通过将气候变化风险和未来气候变化预测中固有的不确定性考虑到设计要求中,从而确保将气候变化纳入工程设计。它涉及使用现有的最佳气候变化数据,并了解资产绩效与环境(气候相关)条件之间的关系。特定资产与气候变化相关的风险水平是通过考虑气候变化危害的严重性和置信度、资产对危害的暴露程度、暴露的资产对危害的脆弱性以及资产适应危害的能力来确定的。该方法考虑了风险水平、气候模式数据的选择、将应用于气候变化数据的“自然变率”基线期、气候变化模式验证、资产寿命时间,特别是如何修改海洋设计标准以考虑气候变化,以确保“生命开始”标准(通常来自观测和后推数据)和“生命结束”标准(包括对资产寿命结束时气候变化影响的估计)符合要求的年超出概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Including the Impact of Climate Change in Offshore and Onshore Metocean Design Criteria to Ensure Asset Robustness
While a significant amount of attention surrounding climate change has focused on mitigation of the causes, there is growing interest and need to adapt to physical climate change impacts which are already being experienced and in anticipation of future changes. Changes in climate have the potential to create hazards in the oil and gas sector although vulnerabilities to these changes are often specific to asset types. Preparedness for climate change can help to reduce damaging effects from acute as well as chronic climate changes. This paper focuses on a simple approach developed to ensure that climate change is included in engineering design, by considering climate change risk and the uncertainty inherent in future projections of climate change into design requirements. It involves using the best available climate change data and an understanding of the relationships between asset performance and environmental (climate-related) conditions. The risk level associated with climate change for a specific asset is determined by consideration of the severity and confidence level of the climate change hazard, the exposure of the asset to the hazard, the vulnerability of the exposed asset to the hazard and the capacity of the asset to adapt to the hazard. The method considers the risk levels, the selection of climate model data, the ‘natural variability’ baseline period to be applied to the climate change data, the climate change model validation, the asset life time and specifically how to modify metocean design criteria to account for climate change to ensure both the ‘start of life’ criteria (typically derived from observed and hindcast data) and ‘end of life’ criteria (including an estimate for the impact of climate change at the end of the asset life) meet the required annual probability of exceedance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Designing the Backbone for the Segmented Model of an Ultra-Large Container Carrier Development of a PID Control Strategy for a Compact Autonomous Underwater Vehicle Global Assessments of Surface Winds and Waves From an Ensemble Forecast System Using Satellite Data Towards the Development of an Ocean Engineering Library for OpenModelica An Experimental Investigation of the Trim Effect on the Behaviour of a Containership in Shallow Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1