利用角相关散射的石墨烯PN结中的电流饱和和陡峭开关

M. Elahi, Avik W. Ghosh
{"title":"利用角相关散射的石墨烯PN结中的电流饱和和陡峭开关","authors":"M. Elahi, Avik W. Ghosh","doi":"10.1109/DRC.2016.7548421","DOIUrl":null,"url":null,"abstract":"Graphene's ultra-high carrier mobility (200,000cm2/Vs on hBN) [1] makes it promising for high speed applications; however the absence of a band-gap makes it hard to design logic elements out of graphene. It is possible to open a bandgap in graphene by applying strain [2] or by confining it in one direction into nanoribbons [3], but in the process bandstructure gets distorted near Dirac point and the carrier mobility decreases [4]. A recent set of papers have exploited instead the angle dependent transmission across graphene pn junctions (GPNJ) [5-9]. Since the opening angle is gate tunable, a sequence of angled junctions can turn off the electrons [10,11] using gateable momentum filtering in the absence of a band-gap (instead, the ideas use a transmission gap). In the absence of edge scattering, momentum filtering is predicted to give large ON, low OFF current and a steep subthreshold swing (SS). In this paper, we calculate the transfer (ID-VG) and output (ID-VD) characteristics of a GPNJ switch [11] and show current saturation using gate geometry alone.","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Current saturation and steep switching in graphene PN junctions using angle-dependent scattering\",\"authors\":\"M. Elahi, Avik W. Ghosh\",\"doi\":\"10.1109/DRC.2016.7548421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene's ultra-high carrier mobility (200,000cm2/Vs on hBN) [1] makes it promising for high speed applications; however the absence of a band-gap makes it hard to design logic elements out of graphene. It is possible to open a bandgap in graphene by applying strain [2] or by confining it in one direction into nanoribbons [3], but in the process bandstructure gets distorted near Dirac point and the carrier mobility decreases [4]. A recent set of papers have exploited instead the angle dependent transmission across graphene pn junctions (GPNJ) [5-9]. Since the opening angle is gate tunable, a sequence of angled junctions can turn off the electrons [10,11] using gateable momentum filtering in the absence of a band-gap (instead, the ideas use a transmission gap). In the absence of edge scattering, momentum filtering is predicted to give large ON, low OFF current and a steep subthreshold swing (SS). In this paper, we calculate the transfer (ID-VG) and output (ID-VD) characteristics of a GPNJ switch [11] and show current saturation using gate geometry alone.\",\"PeriodicalId\":310524,\"journal\":{\"name\":\"2016 74th Annual Device Research Conference (DRC)\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 74th Annual Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2016.7548421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 74th Annual Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2016.7548421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

石墨烯的超高载流子迁移率(hBN上的200,000cm2/Vs)[1]使其有望用于高速应用;然而,没有带隙使得用石墨烯设计逻辑元件变得困难。通过施加应变[2]或将其限制在一个方向的纳米带中[3],可以在石墨烯中打开带隙,但在此过程中,带结构在Dirac点附近扭曲,载流子迁移率降低[4]。最近的一组论文利用了石墨烯pn结(GPNJ)上的角度依赖传输[5-9]。由于打开角度是栅极可调的,在没有带隙的情况下,一系列有角度的结可以使用门控动量滤波关闭电子[10,11](相反,该想法使用传输隙)。在没有边缘散射的情况下,动量滤波预计会产生大的开、低的关电流和陡的亚阈值摆幅(SS)。在本文中,我们计算了GPNJ开关的传输(ID-VG)和输出(ID-VD)特性[11],并仅使用栅极几何形状显示了电流饱和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Current saturation and steep switching in graphene PN junctions using angle-dependent scattering
Graphene's ultra-high carrier mobility (200,000cm2/Vs on hBN) [1] makes it promising for high speed applications; however the absence of a band-gap makes it hard to design logic elements out of graphene. It is possible to open a bandgap in graphene by applying strain [2] or by confining it in one direction into nanoribbons [3], but in the process bandstructure gets distorted near Dirac point and the carrier mobility decreases [4]. A recent set of papers have exploited instead the angle dependent transmission across graphene pn junctions (GPNJ) [5-9]. Since the opening angle is gate tunable, a sequence of angled junctions can turn off the electrons [10,11] using gateable momentum filtering in the absence of a band-gap (instead, the ideas use a transmission gap). In the absence of edge scattering, momentum filtering is predicted to give large ON, low OFF current and a steep subthreshold swing (SS). In this paper, we calculate the transfer (ID-VG) and output (ID-VD) characteristics of a GPNJ switch [11] and show current saturation using gate geometry alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint EMC/DRC plenary session Novel materials for next generation photonic devices True random number generation using voltage controlled spin-dice Current saturation and steep switching in graphene PN junctions using angle-dependent scattering Recent developments in mid-infrared quantum cascade lasers and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1