{"title":"将ASIC设计层次结构映射到有效的块放置和路由布局层次结构的解决方案","authors":"D. Artz, R. Rebello","doi":"10.1109/ASIC.1990.186127","DOIUrl":null,"url":null,"abstract":"Netpar, a netlist partitioner tool developed to speed up and automate the process of layout partitioning and preparation is described. The Netpar partitioning commands allow the user to quickly convert the netlist into a good layout hierarchy. Instead of recapturing schematics, the user can easily direct Netpar to restructure the netlist for layout compatibility. Additionally, an automatic partitioner is available that attempts to equalize block sizes and minimize interconnect. This implements well-documented and tested algorithms for generating optimally partitioned netlists. Netpar's automatic and manual commands can be used to quickly modify hierarchy to improve design performance, turnaround times, and densities.<<ETX>>","PeriodicalId":126693,"journal":{"name":"Third Annual IEEE Proceedings on ASIC Seminar and Exhibit","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A solution to mapping an ASIC design hierarchy into an efficient block-place-and-route layout hierarchy\",\"authors\":\"D. Artz, R. Rebello\",\"doi\":\"10.1109/ASIC.1990.186127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Netpar, a netlist partitioner tool developed to speed up and automate the process of layout partitioning and preparation is described. The Netpar partitioning commands allow the user to quickly convert the netlist into a good layout hierarchy. Instead of recapturing schematics, the user can easily direct Netpar to restructure the netlist for layout compatibility. Additionally, an automatic partitioner is available that attempts to equalize block sizes and minimize interconnect. This implements well-documented and tested algorithms for generating optimally partitioned netlists. Netpar's automatic and manual commands can be used to quickly modify hierarchy to improve design performance, turnaround times, and densities.<<ETX>>\",\"PeriodicalId\":126693,\"journal\":{\"name\":\"Third Annual IEEE Proceedings on ASIC Seminar and Exhibit\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third Annual IEEE Proceedings on ASIC Seminar and Exhibit\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASIC.1990.186127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third Annual IEEE Proceedings on ASIC Seminar and Exhibit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIC.1990.186127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A solution to mapping an ASIC design hierarchy into an efficient block-place-and-route layout hierarchy
Netpar, a netlist partitioner tool developed to speed up and automate the process of layout partitioning and preparation is described. The Netpar partitioning commands allow the user to quickly convert the netlist into a good layout hierarchy. Instead of recapturing schematics, the user can easily direct Netpar to restructure the netlist for layout compatibility. Additionally, an automatic partitioner is available that attempts to equalize block sizes and minimize interconnect. This implements well-documented and tested algorithms for generating optimally partitioned netlists. Netpar's automatic and manual commands can be used to quickly modify hierarchy to improve design performance, turnaround times, and densities.<>