热壁间歇式Ru CVD设备氧气清洗技术

D. Choi, D. Nozu, K. Hasebe, T. Shibata, K. Nakao, M. Izuha, H. Akahori, T. Aoyama, K. Eguchi, K. Hieda, T. Arikado, K. Okumura
{"title":"热壁间歇式Ru CVD设备氧气清洗技术","authors":"D. Choi, D. Nozu, K. Hasebe, T. Shibata, K. Nakao, M. Izuha, H. Akahori, T. Aoyama, K. Eguchi, K. Hieda, T. Arikado, K. Okumura","doi":"10.1109/ISSM.2001.962972","DOIUrl":null,"url":null,"abstract":"The gas cleaning of the hot-wall batch type Ru CVD reactor by oxygen was investigated. The cleaning mechanism is considered as follows. Below 800/spl deg/C, Ru film is oxidized and forms RuO/sub 2/ which is not volatile. But above 800/spl deg/C, RuO/sub 2/ film, which is formed at first, is oxidized again to form RuO/sub 4/. Since RuO/sub 4/ is volatile, it evaporates easily. High temperature, low pressure and high oxygen flow rate were required to obtain fast Ru etching rate. With these optimum cleaning conditions by design of experiments (DOE), 30-nm-thick Ru film was removed completely in 20 minutes. We could accomplish this in situ oxygen gas cleaning effectively in short time by using hot-wall batch type Ru CVD equipment, which has high heating and cooling rate characteristics.","PeriodicalId":356225,"journal":{"name":"2001 IEEE International Symposium on Semiconductor Manufacturing. ISSM 2001. Conference Proceedings (Cat. No.01CH37203)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cleaning technique of hot-wall batch type Ru CVD equipment by oxygen gas\",\"authors\":\"D. Choi, D. Nozu, K. Hasebe, T. Shibata, K. Nakao, M. Izuha, H. Akahori, T. Aoyama, K. Eguchi, K. Hieda, T. Arikado, K. Okumura\",\"doi\":\"10.1109/ISSM.2001.962972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gas cleaning of the hot-wall batch type Ru CVD reactor by oxygen was investigated. The cleaning mechanism is considered as follows. Below 800/spl deg/C, Ru film is oxidized and forms RuO/sub 2/ which is not volatile. But above 800/spl deg/C, RuO/sub 2/ film, which is formed at first, is oxidized again to form RuO/sub 4/. Since RuO/sub 4/ is volatile, it evaporates easily. High temperature, low pressure and high oxygen flow rate were required to obtain fast Ru etching rate. With these optimum cleaning conditions by design of experiments (DOE), 30-nm-thick Ru film was removed completely in 20 minutes. We could accomplish this in situ oxygen gas cleaning effectively in short time by using hot-wall batch type Ru CVD equipment, which has high heating and cooling rate characteristics.\",\"PeriodicalId\":356225,\"journal\":{\"name\":\"2001 IEEE International Symposium on Semiconductor Manufacturing. ISSM 2001. Conference Proceedings (Cat. No.01CH37203)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 IEEE International Symposium on Semiconductor Manufacturing. ISSM 2001. Conference Proceedings (Cat. No.01CH37203)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM.2001.962972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE International Symposium on Semiconductor Manufacturing. ISSM 2001. Conference Proceedings (Cat. No.01CH37203)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM.2001.962972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了热壁间歇式Ru气相沉积反应器的氧气净化。清洗机制考虑如下。在800℃以下,Ru膜被氧化形成不挥发的RuO/sub 2/。但在800℃以上,最初形成的RuO/sub - 2/膜再次氧化形成RuO/sub - 4/。由于RuO/ sub4 /是易挥发的,它很容易蒸发。为了获得快速的Ru刻蚀速率,需要高温、低压和高氧流量。在实验设计的最佳清洗条件下(DOE), 30 nm厚的Ru膜在20分钟内被完全去除。采用热壁间歇式Ru气相沉积设备,具有较高的加热和冷却速率特性,可以在短时间内有效地实现现场氧气净化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cleaning technique of hot-wall batch type Ru CVD equipment by oxygen gas
The gas cleaning of the hot-wall batch type Ru CVD reactor by oxygen was investigated. The cleaning mechanism is considered as follows. Below 800/spl deg/C, Ru film is oxidized and forms RuO/sub 2/ which is not volatile. But above 800/spl deg/C, RuO/sub 2/ film, which is formed at first, is oxidized again to form RuO/sub 4/. Since RuO/sub 4/ is volatile, it evaporates easily. High temperature, low pressure and high oxygen flow rate were required to obtain fast Ru etching rate. With these optimum cleaning conditions by design of experiments (DOE), 30-nm-thick Ru film was removed completely in 20 minutes. We could accomplish this in situ oxygen gas cleaning effectively in short time by using hot-wall batch type Ru CVD equipment, which has high heating and cooling rate characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The practical use of residual gas analysis in a semiconductor thermal processing module Dynamical control method of AMHS for multi-production lines Multi-wafer rapid isothermal processing Remote equipment diagnosis for metal etching process Resource conservation of buffered HF in semiconductor manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1