利用几何特征识别卵巢超声图像中的卵泡

P. Hiremath, Jyothi R. Tegnoor
{"title":"利用几何特征识别卵巢超声图像中的卵泡","authors":"P. Hiremath, Jyothi R. Tegnoor","doi":"10.1109/ICBPE.2009.5384097","DOIUrl":null,"url":null,"abstract":"Knowledge about the status of the female reproductive system is important for fertility problems and age related family planning. The volume of these fertility requests in our emancipated society is steadily increasing. Transvaginal ultrasound imaging of the follicles in the ovary gives important information about the ovarian aging, i.e., number of follicles, size, position and response to hormonal stimulation. Manual analysis of many follicles is laborious and error-prone. In this paper, a new method for recognition of follicles in ultrasound images of ovaries is proposed. This fully automated recognition method is based on extraction of geometric features of follicles. The proposed technique is tested on ultrasonographic images of ovaries. The experimental results are compared with inferences drawn by medical expert and demonstrate the efficacy of the method.","PeriodicalId":384086,"journal":{"name":"2009 International Conference on Biomedical and Pharmaceutical Engineering","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Recognition of follicles in ultrasound images of ovaries using geometric features\",\"authors\":\"P. Hiremath, Jyothi R. Tegnoor\",\"doi\":\"10.1109/ICBPE.2009.5384097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge about the status of the female reproductive system is important for fertility problems and age related family planning. The volume of these fertility requests in our emancipated society is steadily increasing. Transvaginal ultrasound imaging of the follicles in the ovary gives important information about the ovarian aging, i.e., number of follicles, size, position and response to hormonal stimulation. Manual analysis of many follicles is laborious and error-prone. In this paper, a new method for recognition of follicles in ultrasound images of ovaries is proposed. This fully automated recognition method is based on extraction of geometric features of follicles. The proposed technique is tested on ultrasonographic images of ovaries. The experimental results are compared with inferences drawn by medical expert and demonstrate the efficacy of the method.\",\"PeriodicalId\":384086,\"journal\":{\"name\":\"2009 International Conference on Biomedical and Pharmaceutical Engineering\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Biomedical and Pharmaceutical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBPE.2009.5384097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Biomedical and Pharmaceutical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBPE.2009.5384097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

了解女性生殖系统的状况对于生育问题和与年龄相关的计划生育非常重要。在我们解放了的社会中,这些生育要求的数量正在稳步增加。卵巢卵泡经阴道超声成像提供卵巢衰老的重要信息,即卵泡的数量、大小、位置和对激素刺激的反应。对许多卵泡进行人工分析既费力又容易出错。本文提出了一种卵巢超声图像中卵泡识别的新方法。这种完全自动化的识别方法是基于提取毛囊的几何特征。该方法在卵巢超声图像上进行了验证。实验结果与医学专家的推断结果进行了比较,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of follicles in ultrasound images of ovaries using geometric features
Knowledge about the status of the female reproductive system is important for fertility problems and age related family planning. The volume of these fertility requests in our emancipated society is steadily increasing. Transvaginal ultrasound imaging of the follicles in the ovary gives important information about the ovarian aging, i.e., number of follicles, size, position and response to hormonal stimulation. Manual analysis of many follicles is laborious and error-prone. In this paper, a new method for recognition of follicles in ultrasound images of ovaries is proposed. This fully automated recognition method is based on extraction of geometric features of follicles. The proposed technique is tested on ultrasonographic images of ovaries. The experimental results are compared with inferences drawn by medical expert and demonstrate the efficacy of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise reduction in DEXA image based on system noise modeling Feature selection and classification for Wireless Capsule Endoscopic frames The unique gene expression profile of the anti-tumour agent, cisplatin, compared with its clinically ineffective isomer, transplatin Genome-Wide Association study for glaucoma A surgical training simulator for temporal bone anatomy education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1