{"title":"学生逃避预测:通用模型学习中不同训练表征的比较分析","authors":"Miriam Pizzatto Colpo, T. Primo, M. Aguiar","doi":"10.5753/sbie.2021.218517","DOIUrl":null,"url":null,"abstract":"Neste trabalho são avaliadas diferentes formas de representar o comportamento de evasão no desenvolvimento de modelos genéricos, destinados a prever o risco de abandono, em diferentes semestres e cursos, de alunos de graduação da modalidade presencial. A partir de um cuidadoso pré-processamento e da criação de distintas representações de dados de treino, foram construídos diferentes modelos de aprendizado de máquina, a fim de avaliar qual representação melhor contribui para o desempenho das predições. Como resultado, verificou-se que exemplificar o comportamento dos alunos em todos os semestres cursados, de forma acumulada e progressiva, beneficiou a aprendizagem do modelo preditivo, provendo uma acurácia de 80.1%.","PeriodicalId":298990,"journal":{"name":"Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)","volume":"377 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predição da evasão estudantil: uma análise comparativa de diferentes representações de treino na aprendizagem de modelos genéricos\",\"authors\":\"Miriam Pizzatto Colpo, T. Primo, M. Aguiar\",\"doi\":\"10.5753/sbie.2021.218517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neste trabalho são avaliadas diferentes formas de representar o comportamento de evasão no desenvolvimento de modelos genéricos, destinados a prever o risco de abandono, em diferentes semestres e cursos, de alunos de graduação da modalidade presencial. A partir de um cuidadoso pré-processamento e da criação de distintas representações de dados de treino, foram construídos diferentes modelos de aprendizado de máquina, a fim de avaliar qual representação melhor contribui para o desempenho das predições. Como resultado, verificou-se que exemplificar o comportamento dos alunos em todos os semestres cursados, de forma acumulada e progressiva, beneficiou a aprendizagem do modelo preditivo, provendo uma acurácia de 80.1%.\",\"PeriodicalId\":298990,\"journal\":{\"name\":\"Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)\",\"volume\":\"377 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbie.2021.218517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXXII Simpósio Brasileiro de Informática na Educação (SBIE 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbie.2021.218517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predição da evasão estudantil: uma análise comparativa de diferentes representações de treino na aprendizagem de modelos genéricos
Neste trabalho são avaliadas diferentes formas de representar o comportamento de evasão no desenvolvimento de modelos genéricos, destinados a prever o risco de abandono, em diferentes semestres e cursos, de alunos de graduação da modalidade presencial. A partir de um cuidadoso pré-processamento e da criação de distintas representações de dados de treino, foram construídos diferentes modelos de aprendizado de máquina, a fim de avaliar qual representação melhor contribui para o desempenho das predições. Como resultado, verificou-se que exemplificar o comportamento dos alunos em todos os semestres cursados, de forma acumulada e progressiva, beneficiou a aprendizagem do modelo preditivo, provendo uma acurácia de 80.1%.