Zhengxiang Shen, Bin Ma, T. Ding, Xiaoqiang Wang, Zhanshan Wang, Lishuan Wang, Hua-song Liu, Yi-qin Ji
{"title":"亚纳米超光滑表面的制备与定量表征","authors":"Zhengxiang Shen, Bin Ma, T. Ding, Xiaoqiang Wang, Zhanshan Wang, Lishuan Wang, Hua-song Liu, Yi-qin Ji","doi":"10.1117/12.888916","DOIUrl":null,"url":null,"abstract":"There is a growing requirement to use supersmooth surfaces with roughness in the sub-nanometer range. But, to produce 100mm-diameter optical elements with ultra-flat and supersmooth surfaces is still difficult. The fabrication technique based on continues polishing process is presented to produce flat optical element with extremely smooth surface. During the fabrication, A concept of \"Process Controlling\" is introduced, which means the machining of super-smooth surfaces is considered as a chain consisted of some key nodes, not merely a polishing process. The surface figure is tested using interferometer and the surface roughness is using interference microscopy and atom force microscopy (AFM) repectively. Then the Power Spectral Density (PSD) function, including the basic theory and the physical meaning, are presented to explain the difference of test results, which is measured by optical profiler and AFM with different parameters. The polynomial fitting results indicate that there is excellent agreement between measurements made by the two instruments.","PeriodicalId":316559,"journal":{"name":"International Conference on Thin Film Physics and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication and quantitative characterization of super smooth surface with sub-nanometer roughness\",\"authors\":\"Zhengxiang Shen, Bin Ma, T. Ding, Xiaoqiang Wang, Zhanshan Wang, Lishuan Wang, Hua-song Liu, Yi-qin Ji\",\"doi\":\"10.1117/12.888916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing requirement to use supersmooth surfaces with roughness in the sub-nanometer range. But, to produce 100mm-diameter optical elements with ultra-flat and supersmooth surfaces is still difficult. The fabrication technique based on continues polishing process is presented to produce flat optical element with extremely smooth surface. During the fabrication, A concept of \\\"Process Controlling\\\" is introduced, which means the machining of super-smooth surfaces is considered as a chain consisted of some key nodes, not merely a polishing process. The surface figure is tested using interferometer and the surface roughness is using interference microscopy and atom force microscopy (AFM) repectively. Then the Power Spectral Density (PSD) function, including the basic theory and the physical meaning, are presented to explain the difference of test results, which is measured by optical profiler and AFM with different parameters. The polynomial fitting results indicate that there is excellent agreement between measurements made by the two instruments.\",\"PeriodicalId\":316559,\"journal\":{\"name\":\"International Conference on Thin Film Physics and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Thin Film Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.888916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.888916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and quantitative characterization of super smooth surface with sub-nanometer roughness
There is a growing requirement to use supersmooth surfaces with roughness in the sub-nanometer range. But, to produce 100mm-diameter optical elements with ultra-flat and supersmooth surfaces is still difficult. The fabrication technique based on continues polishing process is presented to produce flat optical element with extremely smooth surface. During the fabrication, A concept of "Process Controlling" is introduced, which means the machining of super-smooth surfaces is considered as a chain consisted of some key nodes, not merely a polishing process. The surface figure is tested using interferometer and the surface roughness is using interference microscopy and atom force microscopy (AFM) repectively. Then the Power Spectral Density (PSD) function, including the basic theory and the physical meaning, are presented to explain the difference of test results, which is measured by optical profiler and AFM with different parameters. The polynomial fitting results indicate that there is excellent agreement between measurements made by the two instruments.