32位嵌入式微控制器的功耗分析

V. Tiwari, M. Lee
{"title":"32位嵌入式微控制器的功耗分析","authors":"V. Tiwari, M. Lee","doi":"10.1109/ASPDAC.1995.486215","DOIUrl":null,"url":null,"abstract":"A new approach for power analysis of microprocessors has recently been proposed (Tiwari et al 1994). The idea is to look at the power consumption in a microprocessor from the point of view of the actual software executing on the processor. The basic component of this approach is a measurement based, instruction-level power analysis technique. The technique allows for the development of an instruction-level power model for the given processor, which can be used to evaluate software in terms of the power consumption, and for exploring the optimization of software for lower power. This paper describes the application of this technique for a comprehensive instruction-level power analysis of a commercial 32-bit RISC-based embedded microcontroller. The salient results of the analysis and the basic instruction-level power model are described. Interesting observations and insights based on the results are also presented. Such an instruction-level power analysis can provide cues as to what optimizations in the micro-architecture design of the processor would lead to the most effective power savings in actual software applications. Wherever the results indicate such optimizations, they have been discussed. Furthermore, ideas for low power software design, as suggested by the results, are described in this paper as well.","PeriodicalId":119232,"journal":{"name":"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"Power analysis of a 32-bit embedded microcontroller\",\"authors\":\"V. Tiwari, M. Lee\",\"doi\":\"10.1109/ASPDAC.1995.486215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach for power analysis of microprocessors has recently been proposed (Tiwari et al 1994). The idea is to look at the power consumption in a microprocessor from the point of view of the actual software executing on the processor. The basic component of this approach is a measurement based, instruction-level power analysis technique. The technique allows for the development of an instruction-level power model for the given processor, which can be used to evaluate software in terms of the power consumption, and for exploring the optimization of software for lower power. This paper describes the application of this technique for a comprehensive instruction-level power analysis of a commercial 32-bit RISC-based embedded microcontroller. The salient results of the analysis and the basic instruction-level power model are described. Interesting observations and insights based on the results are also presented. Such an instruction-level power analysis can provide cues as to what optimizations in the micro-architecture design of the processor would lead to the most effective power savings in actual software applications. Wherever the results indicate such optimizations, they have been discussed. Furthermore, ideas for low power software design, as suggested by the results, are described in this paper as well.\",\"PeriodicalId\":119232,\"journal\":{\"name\":\"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.1995.486215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ASP-DAC'95/CHDL'95/VLSI'95 with EDA Technofair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1995.486215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

摘要

最近提出了一种新的微处理器功耗分析方法(Tiwari et al . 1994)。这个想法是从处理器上执行的实际软件的角度来看微处理器的功耗。该方法的基本组成部分是基于测量的指导性功率分析技术。该技术允许为给定处理器开发指令级功耗模型,该模型可用于根据功耗评估软件,并用于探索低功耗软件的优化。本文介绍了该技术在商用32位risc嵌入式微控制器的综合指令级功耗分析中的应用。介绍了分析的显著结果和基本指令级功率模型。还介绍了基于结果的有趣观察和见解。这种指令级功耗分析可以提供线索,说明处理器微架构设计中的哪些优化将导致实际软件应用程序中最有效的功耗节省。只要结果表明了这种优化,就会对其进行讨论。此外,根据研究结果提出了低功耗软件设计的思路,并在本文中进行了描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power analysis of a 32-bit embedded microcontroller
A new approach for power analysis of microprocessors has recently been proposed (Tiwari et al 1994). The idea is to look at the power consumption in a microprocessor from the point of view of the actual software executing on the processor. The basic component of this approach is a measurement based, instruction-level power analysis technique. The technique allows for the development of an instruction-level power model for the given processor, which can be used to evaluate software in terms of the power consumption, and for exploring the optimization of software for lower power. This paper describes the application of this technique for a comprehensive instruction-level power analysis of a commercial 32-bit RISC-based embedded microcontroller. The salient results of the analysis and the basic instruction-level power model are described. Interesting observations and insights based on the results are also presented. Such an instruction-level power analysis can provide cues as to what optimizations in the micro-architecture design of the processor would lead to the most effective power savings in actual software applications. Wherever the results indicate such optimizations, they have been discussed. Furthermore, ideas for low power software design, as suggested by the results, are described in this paper as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending pitchmatching algorithms to layouts with multiple grid constraints Routing space estimation and safe assignment for macro cell placement Formal verification of pipelined and superscalar processors Test pattern embedding in sequential circuits through cellular automata Automatic verification of memory systems which service their requests out of order
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1