欧空局OPS-SAT任务的热真空测试和热性能

M. Kubicka, O. Koudelka, David Evans, R. Zeif, Maximilian Henkel, A. Hörmer
{"title":"欧空局OPS-SAT任务的热真空测试和热性能","authors":"M. Kubicka, O. Koudelka, David Evans, R. Zeif, Maximilian Henkel, A. Hörmer","doi":"10.1109/CoBCom49975.2020.9174095","DOIUrl":null,"url":null,"abstract":"OPS-SAT is a 3U CubeSat, designed for versatile use as an experimental platform for industry and universities, to demonstrate new operational concepts and prototype software in a real space environment. The satellite offers numerous payloads alongside the satellite bus, all of which might be used by an OPS-SAT experiment. The unpredictable nature of experiments with respect to the use of payload components raises certain unknowns, in particular concerning power consumption. As a result, the thermal behaviour throughout the satellite depends largely on which of the several on-board experiments and the associated payloads are switched on. OPS-SAT offers a variety of communication modules, such as a UHF transceiver, an S-Band transceiver, a Software Defined Radio (SDR), an X-Band transmitter and an optical receiver. The peak power consumption of OPS-SAT may exceed 30 watts during high power experiments. The S-Band transceiver consumes up to 10 watts during ground station passes and the so-called Satellite Experimental Processing Platform (SEPP), the heart of OPS-SAT experiments, consumes up to 8 watts constantly. This work provides an overview of the design and the thermal considerations on OPS-SAT and the results of the thermal vacuum (TVAC) test campaign. The results yield an average thermo-optical emissivity of 0.79 to 0.84 and the thermal power distribution on the spacecraft surface, and demonstrate the special case of the thermally isolated S-Band and X-Band patch antennas. Based on the derived results, predictions can be made about the thermal behaviour during various load cases and during periods with an active S-Band transmitter.","PeriodicalId":442802,"journal":{"name":"2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal Vacuum Tests and Thermal Properties on ESA’s OPS-SAT mission\",\"authors\":\"M. Kubicka, O. Koudelka, David Evans, R. Zeif, Maximilian Henkel, A. Hörmer\",\"doi\":\"10.1109/CoBCom49975.2020.9174095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OPS-SAT is a 3U CubeSat, designed for versatile use as an experimental platform for industry and universities, to demonstrate new operational concepts and prototype software in a real space environment. The satellite offers numerous payloads alongside the satellite bus, all of which might be used by an OPS-SAT experiment. The unpredictable nature of experiments with respect to the use of payload components raises certain unknowns, in particular concerning power consumption. As a result, the thermal behaviour throughout the satellite depends largely on which of the several on-board experiments and the associated payloads are switched on. OPS-SAT offers a variety of communication modules, such as a UHF transceiver, an S-Band transceiver, a Software Defined Radio (SDR), an X-Band transmitter and an optical receiver. The peak power consumption of OPS-SAT may exceed 30 watts during high power experiments. The S-Band transceiver consumes up to 10 watts during ground station passes and the so-called Satellite Experimental Processing Platform (SEPP), the heart of OPS-SAT experiments, consumes up to 8 watts constantly. This work provides an overview of the design and the thermal considerations on OPS-SAT and the results of the thermal vacuum (TVAC) test campaign. The results yield an average thermo-optical emissivity of 0.79 to 0.84 and the thermal power distribution on the spacecraft surface, and demonstrate the special case of the thermally isolated S-Band and X-Band patch antennas. Based on the derived results, predictions can be made about the thermal behaviour during various load cases and during periods with an active S-Band transmitter.\",\"PeriodicalId\":442802,\"journal\":{\"name\":\"2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoBCom49975.2020.9174095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoBCom49975.2020.9174095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

OPS-SAT是一颗3U立方体卫星,设计用于工业和大学的多功能实验平台,在真实的空间环境中演示新的操作概念和原型软件。卫星与卫星总线一起提供了许多有效载荷,所有这些都可能被OPS-SAT实验使用。关于有效载荷部件使用的实验的不可预测性提出了某些未知因素,特别是在功耗方面。因此,整个卫星的热行为在很大程度上取决于几个机载实验和相关有效载荷中的哪一个被打开。OPS-SAT提供多种通信模块,如UHF收发器、s波段收发器、软件定义无线电(SDR)、x波段发射机和光学接收器。在高功率实验中,OPS-SAT的峰值功耗可能超过30瓦。s波段收发器在地面站通道期间消耗高达10瓦,而所谓的卫星实验处理平台(SEPP), OPS-SAT实验的核心,持续消耗高达8瓦。这项工作概述了OPS-SAT的设计和热考虑因素以及热真空(TVAC)测试活动的结果。结果表明,平均热光发射率为0.79 ~ 0.84,热功率分布在航天器表面,并演示了热隔离s波段和x波段贴片天线的特殊情况。根据导出的结果,可以对各种负载情况下和有源s波段发射机期间的热行为进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal Vacuum Tests and Thermal Properties on ESA’s OPS-SAT mission
OPS-SAT is a 3U CubeSat, designed for versatile use as an experimental platform for industry and universities, to demonstrate new operational concepts and prototype software in a real space environment. The satellite offers numerous payloads alongside the satellite bus, all of which might be used by an OPS-SAT experiment. The unpredictable nature of experiments with respect to the use of payload components raises certain unknowns, in particular concerning power consumption. As a result, the thermal behaviour throughout the satellite depends largely on which of the several on-board experiments and the associated payloads are switched on. OPS-SAT offers a variety of communication modules, such as a UHF transceiver, an S-Band transceiver, a Software Defined Radio (SDR), an X-Band transmitter and an optical receiver. The peak power consumption of OPS-SAT may exceed 30 watts during high power experiments. The S-Band transceiver consumes up to 10 watts during ground station passes and the so-called Satellite Experimental Processing Platform (SEPP), the heart of OPS-SAT experiments, consumes up to 8 watts constantly. This work provides an overview of the design and the thermal considerations on OPS-SAT and the results of the thermal vacuum (TVAC) test campaign. The results yield an average thermo-optical emissivity of 0.79 to 0.84 and the thermal power distribution on the spacecraft surface, and demonstrate the special case of the thermally isolated S-Band and X-Band patch antennas. Based on the derived results, predictions can be made about the thermal behaviour during various load cases and during periods with an active S-Band transmitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the Refractive Index Structure Parameter: A ResNet Approach DVFS Technique on a Zynq SoC-based System for Low Power Consumption Optimization of Thick BoR Monopole Antennas Using Differential Evolution A Broadband 2.1 GHz LDMOS Power Amplifier with 700 MHz Bandwidth Implementing Band-pass Filter-Based Matching Networks Maritime Communications and Remote Voyage Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1