{"title":"采用隔离和自对准工艺制备的新型平面型体连接FinFET的射频性能","authors":"Po-Hsieh Lin, Jyi-Tsong Lin, Y. Eng, Yu-Che Chang","doi":"10.1109/ULIS.2011.5757990","DOIUrl":null,"url":null,"abstract":"In this paper, we for the first time demonstrate a detailed radio frequency (RF) simulation study of the novel planar-type body-connected FinFET with 45 nm gate length, for which the DC behavior exhibits better I<inf>ON</inf>-I<inf>OFF</inf> current ratio and improved transconductance performance when compared with a planar-type FinFET. The RF characteristics are carried out as functions of gate voltage (V<inf>G</inf>) and drain current (I<inf>D</inf>) as well as the overdrive voltage (V<inf>OV</inf>). In addition, the total gate capacitance (C<inf>gg</inf>) is also reported.","PeriodicalId":146779,"journal":{"name":"Ulis 2011 Ultimate Integration on Silicon","volume":"485 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RF performance of the novel planar-type body-connected FinFET fabricated by isolation-last and self-alignment process\",\"authors\":\"Po-Hsieh Lin, Jyi-Tsong Lin, Y. Eng, Yu-Che Chang\",\"doi\":\"10.1109/ULIS.2011.5757990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we for the first time demonstrate a detailed radio frequency (RF) simulation study of the novel planar-type body-connected FinFET with 45 nm gate length, for which the DC behavior exhibits better I<inf>ON</inf>-I<inf>OFF</inf> current ratio and improved transconductance performance when compared with a planar-type FinFET. The RF characteristics are carried out as functions of gate voltage (V<inf>G</inf>) and drain current (I<inf>D</inf>) as well as the overdrive voltage (V<inf>OV</inf>). In addition, the total gate capacitance (C<inf>gg</inf>) is also reported.\",\"PeriodicalId\":146779,\"journal\":{\"name\":\"Ulis 2011 Ultimate Integration on Silicon\",\"volume\":\"485 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ulis 2011 Ultimate Integration on Silicon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULIS.2011.5757990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ulis 2011 Ultimate Integration on Silicon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULIS.2011.5757990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RF performance of the novel planar-type body-connected FinFET fabricated by isolation-last and self-alignment process
In this paper, we for the first time demonstrate a detailed radio frequency (RF) simulation study of the novel planar-type body-connected FinFET with 45 nm gate length, for which the DC behavior exhibits better ION-IOFF current ratio and improved transconductance performance when compared with a planar-type FinFET. The RF characteristics are carried out as functions of gate voltage (VG) and drain current (ID) as well as the overdrive voltage (VOV). In addition, the total gate capacitance (Cgg) is also reported.