聚合物和混合太阳能电池:界面的关键作用(会议报告)

T. Marks
{"title":"聚合物和混合太阳能电池:界面的关键作用(会议报告)","authors":"T. Marks","doi":"10.1117/12.2530651","DOIUrl":null,"url":null,"abstract":"The performance of molecular/macromolecular and hybrid solar cells depends on understanding and controlling the interfaces between the component materials. Molecularly tailoring interfaces offers an effective and informative means to selectively modulate charge transport, molecular self-assembly, and exciton dynamics at hard matter-soft matter and soft-soft matter interfaces. Such interfaces can act as filters to facilitate extraction of “correct charges” while blocking extraction of “incorrect charges” at electrode-active layer and active layer-active layer interfaces in almost all types of solar cells. Such interface engineering can also suppress carrier-trapping defects at interfaces and stabilize such interfaces against de-cohesion and the ingress of oxidants. For soft matter-soft matter interfaces, interfacial tailoring also enhances charge separation and photocurrent generation. In this lecture, challenges and opportunities in controlling the structures of solar cell interfaces are illustrated in the following areas:1) modulating charge transport by active layer molecular/microstructural organization,[1],[2] 2) controlling exciton splitting and carrier generation at active layer donor-acceptor interfaces,[3],[4] 3) tuning donor-acceptor combinations for maximum performance,[5],[6] 4) modulating charge transport across electrode-soft matter interfaces in polymer and perovskite cells.[7] Rational interface engineering along with improved donor and acceptor structures, guided by theoretical/computational analysis, affords large fill factors, efficiencies greater than 14%, and enhanced cell durability. All this must of course be accomplished using environmentally benign synthetic processes.[8]\n\nREFERENCES\n[1] Manley, E.F.; Strzalka, J.; Fauvell, T.J.; Jackson, N.E.; Marks, T.J.; Chen, L.X. Advan. Mater. 2018, 30, 1703933.\n[2] Manley, E.F.; Harschneck, T.; Eastham, N.D.; Leonardi, M.J.; Zhou, N.; Chang, R.P.H.; Chen, L.X.; Marks, T.J. Advan. Energy Mater. 2019, 1800611.\n[3] Eastham, N.D.; Dudnik, A.S.; Aldrich, T.J.; Manley, E.F.; Fauvell, T.J.; Hartnett, P.E.; Wasielewski, M.R.; Chen, L.X.; Facchetti, A.F.; Chang, R.P.H.; Marks, T.J. Chem. Mater. 2017, 29, 4432–4444.\n[4] Wang, G.; Eastham, N.D.; Aldrich, T.J.; Ma, B.; Manley, E.F.; Chen, Z.; Chen, L.X.; Olvera de la Cruz, M.; Chang, R.P.H.; Facchetti, A.; Marks, T.J. Advan. Energy Mater. 2018, 8, 1702173.\n[5] Eastham, N.D.; Logsdon, J.L.; Manley, E.F.; Aldrich, T.J.; Leonardi, M.J.; Wang, G.; Powers-Riggs, N.E.; Young, R.M.; Chen, L.X.; Wasielewski, M.R.; Melkonyan, F.S.; Chang, R.P.H.; Marks, T.J. Advan. Mater. 2018, 30,1704263. .\n[6] Fallon, K.J.; Santala, A.; Wijeyasinghe, N.; Manley, E.F.; Goodeal, N.; Leventis, A.; Freeman, D.M.E.; Al-Hashimi, M.; Chen, L.X.; Marks, T.J.; Anthopoulos, T.D.; Bronstein, H. Advan. Funct. Mater. 2017, 27, 1704069.\n[7] Liao, H.-C.; Tam, T.L.D; Guo, P.; Wu, Y.; Manley, E.; Huang, W.; Seo, C. M.; Wasielewski, M.R.; Kanatzidis, M.G.; Chen, L.C.; Facchetti, A.; Chang, R.P.H.; Marks, T.J. Advan. Energy Mater. 2016, 1600502.\n[8] Aldrich, T.J.; Matta, M.; Zhu, W.; Swick, S.M.; Stern, C.; Schatz, G.C.; Facchetti, A.; Melkonyan, F.S.; Marks, T.J.;, J. Amer. Chem. Soc. 2019, in press. DOI: 10.1021/jacs.8b13653.","PeriodicalId":342552,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XX","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer and hybrid solar cells: The crucial role of interfaces (Conference Presentation)\",\"authors\":\"T. Marks\",\"doi\":\"10.1117/12.2530651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of molecular/macromolecular and hybrid solar cells depends on understanding and controlling the interfaces between the component materials. Molecularly tailoring interfaces offers an effective and informative means to selectively modulate charge transport, molecular self-assembly, and exciton dynamics at hard matter-soft matter and soft-soft matter interfaces. Such interfaces can act as filters to facilitate extraction of “correct charges” while blocking extraction of “incorrect charges” at electrode-active layer and active layer-active layer interfaces in almost all types of solar cells. Such interface engineering can also suppress carrier-trapping defects at interfaces and stabilize such interfaces against de-cohesion and the ingress of oxidants. For soft matter-soft matter interfaces, interfacial tailoring also enhances charge separation and photocurrent generation. In this lecture, challenges and opportunities in controlling the structures of solar cell interfaces are illustrated in the following areas:1) modulating charge transport by active layer molecular/microstructural organization,[1],[2] 2) controlling exciton splitting and carrier generation at active layer donor-acceptor interfaces,[3],[4] 3) tuning donor-acceptor combinations for maximum performance,[5],[6] 4) modulating charge transport across electrode-soft matter interfaces in polymer and perovskite cells.[7] Rational interface engineering along with improved donor and acceptor structures, guided by theoretical/computational analysis, affords large fill factors, efficiencies greater than 14%, and enhanced cell durability. All this must of course be accomplished using environmentally benign synthetic processes.[8]\\n\\nREFERENCES\\n[1] Manley, E.F.; Strzalka, J.; Fauvell, T.J.; Jackson, N.E.; Marks, T.J.; Chen, L.X. Advan. Mater. 2018, 30, 1703933.\\n[2] Manley, E.F.; Harschneck, T.; Eastham, N.D.; Leonardi, M.J.; Zhou, N.; Chang, R.P.H.; Chen, L.X.; Marks, T.J. Advan. Energy Mater. 2019, 1800611.\\n[3] Eastham, N.D.; Dudnik, A.S.; Aldrich, T.J.; Manley, E.F.; Fauvell, T.J.; Hartnett, P.E.; Wasielewski, M.R.; Chen, L.X.; Facchetti, A.F.; Chang, R.P.H.; Marks, T.J. Chem. Mater. 2017, 29, 4432–4444.\\n[4] Wang, G.; Eastham, N.D.; Aldrich, T.J.; Ma, B.; Manley, E.F.; Chen, Z.; Chen, L.X.; Olvera de la Cruz, M.; Chang, R.P.H.; Facchetti, A.; Marks, T.J. Advan. Energy Mater. 2018, 8, 1702173.\\n[5] Eastham, N.D.; Logsdon, J.L.; Manley, E.F.; Aldrich, T.J.; Leonardi, M.J.; Wang, G.; Powers-Riggs, N.E.; Young, R.M.; Chen, L.X.; Wasielewski, M.R.; Melkonyan, F.S.; Chang, R.P.H.; Marks, T.J. Advan. Mater. 2018, 30,1704263. .\\n[6] Fallon, K.J.; Santala, A.; Wijeyasinghe, N.; Manley, E.F.; Goodeal, N.; Leventis, A.; Freeman, D.M.E.; Al-Hashimi, M.; Chen, L.X.; Marks, T.J.; Anthopoulos, T.D.; Bronstein, H. Advan. Funct. Mater. 2017, 27, 1704069.\\n[7] Liao, H.-C.; Tam, T.L.D; Guo, P.; Wu, Y.; Manley, E.; Huang, W.; Seo, C. M.; Wasielewski, M.R.; Kanatzidis, M.G.; Chen, L.C.; Facchetti, A.; Chang, R.P.H.; Marks, T.J. Advan. Energy Mater. 2016, 1600502.\\n[8] Aldrich, T.J.; Matta, M.; Zhu, W.; Swick, S.M.; Stern, C.; Schatz, G.C.; Facchetti, A.; Melkonyan, F.S.; Marks, T.J.;, J. Amer. Chem. Soc. 2019, in press. DOI: 10.1021/jacs.8b13653.\",\"PeriodicalId\":342552,\"journal\":{\"name\":\"Organic, Hybrid, and Perovskite Photovoltaics XX\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic, Hybrid, and Perovskite Photovoltaics XX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2530651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic, Hybrid, and Perovskite Photovoltaics XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2530651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子/大分子和混合太阳能电池的性能取决于对组件材料之间界面的理解和控制。分子裁剪界面提供了一种有效的、信息丰富的方法来选择性地调节硬物质-软物质和软物质界面上的电荷输运、分子自组装和激子动力学。在几乎所有类型的太阳能电池中,这种界面可以起到过滤器的作用,促进“正确电荷”的提取,同时阻止“错误电荷”在电极-活性层和有源层-有源层界面的提取。这种界面工程还可以抑制界面上的载流子捕获缺陷,并稳定界面,防止脱聚和氧化剂的进入。对于软物质-软物质界面,界面裁剪也增强了电荷分离和光电流的产生。在这节课中,控制太阳能电池界面结构的挑战和机遇体现在以下几个方面:1)通过活性层分子/微观结构组织调节电荷传输,[1],[2]2)控制活性层供体-受体界面的激子分裂和载流子产生,[3],[4]3)调节供体-受体组合以获得最大性能,[5],[6]4)调节聚合物和钙钛矿电池中电极-软物质界面的电荷传输[7]。合理的界面工程以及改进的供体和受体结构,在理论/计算分析的指导下,提供了大的填充系数,效率大于14%,并增强了细胞的耐久性。当然,所有这些都必须使用无害环境的合成工艺来完成。[8]李晓明,李晓明。Strzalka, j .;Fauvell T.J.;杰克逊,N.E.;标志,T.J.;陈立新。材料,2018,30,1703933.[2]Manley E.F.;Harschneck t;菲尔特Eastham;Leonardi M.J.;周:;Chang R.P.H.;陈,L.X.;马克斯,T.J.阿德万。能源工程学报,2017,18 (3):481 - 481 .[3]菲尔特Eastham;Dudnik响亮;奥尔德里奇,T.J.;Manley E.F.;Fauvell T.J.;Hartnett体育;Wasielewski,核磁共振;陈,L.X.;法切蒂,自动跟踪;Chang R.P.H.;马克斯,T.J.化学。材料学报,2017,29,4432-4444 .[4]王,g;菲尔特Eastham;奥尔德里奇,T.J.;马,b;Manley E.F.;陈,z;陈,L.X.;奥尔维拉·德拉·克鲁兹,m.s;Chang R.P.H.;法切蒂,a;马克斯,T.J.阿德万。能源工程学报,2018,8 (5):557 - 557 .[5]菲尔特Eastham;洛格斯登,评论;Manley E.F.;奥尔德里奇,T.J.;Leonardi M.J.;王,g;Powers-Riggs N.E.;年轻、智慧化;陈,L.X.;Wasielewski,核磁共振;Melkonyan F.S.;Chang R.P.H.;马克斯,T.J.阿德万。[6]张建军,张建军,张建军,等。Santala, a;Wijeyasinghe:;Manley E.F.;Goodeal:;Leventis, a;弗里曼,D.M.E.;哈,m;陈,L.X.;标志,T.J.;Anthopoulos杰;布朗斯坦,H.阿德万。功能。材料,2017,27,1704069.[7]廖、H.-C;Tam T.L.D;郭,p;吴,y;Manley大肠;黄,w;徐,c.m.;Wasielewski,核磁共振;Kanatzidis M.G.;陈,开出信用证;法切蒂,a;Chang R.P.H.;马克斯,T.J.阿德万。能源工程学报,2016,37 (8):663 - 667 .[8]奥尔德里奇,T.J.;马特,m;朱,w;Swick克里;斯特恩,c;宝贝儿,G.C.;法切蒂,a;Melkonyan F.S.;马克斯,T.J.;化学。Soc. 2019即将出版。DOI: 10.1021 / jacs.8b13653。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polymer and hybrid solar cells: The crucial role of interfaces (Conference Presentation)
The performance of molecular/macromolecular and hybrid solar cells depends on understanding and controlling the interfaces between the component materials. Molecularly tailoring interfaces offers an effective and informative means to selectively modulate charge transport, molecular self-assembly, and exciton dynamics at hard matter-soft matter and soft-soft matter interfaces. Such interfaces can act as filters to facilitate extraction of “correct charges” while blocking extraction of “incorrect charges” at electrode-active layer and active layer-active layer interfaces in almost all types of solar cells. Such interface engineering can also suppress carrier-trapping defects at interfaces and stabilize such interfaces against de-cohesion and the ingress of oxidants. For soft matter-soft matter interfaces, interfacial tailoring also enhances charge separation and photocurrent generation. In this lecture, challenges and opportunities in controlling the structures of solar cell interfaces are illustrated in the following areas:1) modulating charge transport by active layer molecular/microstructural organization,[1],[2] 2) controlling exciton splitting and carrier generation at active layer donor-acceptor interfaces,[3],[4] 3) tuning donor-acceptor combinations for maximum performance,[5],[6] 4) modulating charge transport across electrode-soft matter interfaces in polymer and perovskite cells.[7] Rational interface engineering along with improved donor and acceptor structures, guided by theoretical/computational analysis, affords large fill factors, efficiencies greater than 14%, and enhanced cell durability. All this must of course be accomplished using environmentally benign synthetic processes.[8] REFERENCES [1] Manley, E.F.; Strzalka, J.; Fauvell, T.J.; Jackson, N.E.; Marks, T.J.; Chen, L.X. Advan. Mater. 2018, 30, 1703933. [2] Manley, E.F.; Harschneck, T.; Eastham, N.D.; Leonardi, M.J.; Zhou, N.; Chang, R.P.H.; Chen, L.X.; Marks, T.J. Advan. Energy Mater. 2019, 1800611. [3] Eastham, N.D.; Dudnik, A.S.; Aldrich, T.J.; Manley, E.F.; Fauvell, T.J.; Hartnett, P.E.; Wasielewski, M.R.; Chen, L.X.; Facchetti, A.F.; Chang, R.P.H.; Marks, T.J. Chem. Mater. 2017, 29, 4432–4444. [4] Wang, G.; Eastham, N.D.; Aldrich, T.J.; Ma, B.; Manley, E.F.; Chen, Z.; Chen, L.X.; Olvera de la Cruz, M.; Chang, R.P.H.; Facchetti, A.; Marks, T.J. Advan. Energy Mater. 2018, 8, 1702173. [5] Eastham, N.D.; Logsdon, J.L.; Manley, E.F.; Aldrich, T.J.; Leonardi, M.J.; Wang, G.; Powers-Riggs, N.E.; Young, R.M.; Chen, L.X.; Wasielewski, M.R.; Melkonyan, F.S.; Chang, R.P.H.; Marks, T.J. Advan. Mater. 2018, 30,1704263. . [6] Fallon, K.J.; Santala, A.; Wijeyasinghe, N.; Manley, E.F.; Goodeal, N.; Leventis, A.; Freeman, D.M.E.; Al-Hashimi, M.; Chen, L.X.; Marks, T.J.; Anthopoulos, T.D.; Bronstein, H. Advan. Funct. Mater. 2017, 27, 1704069. [7] Liao, H.-C.; Tam, T.L.D; Guo, P.; Wu, Y.; Manley, E.; Huang, W.; Seo, C. M.; Wasielewski, M.R.; Kanatzidis, M.G.; Chen, L.C.; Facchetti, A.; Chang, R.P.H.; Marks, T.J. Advan. Energy Mater. 2016, 1600502. [8] Aldrich, T.J.; Matta, M.; Zhu, W.; Swick, S.M.; Stern, C.; Schatz, G.C.; Facchetti, A.; Melkonyan, F.S.; Marks, T.J.;, J. Amer. Chem. Soc. 2019, in press. DOI: 10.1021/jacs.8b13653.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 11094 The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells (Conference Presentation) Phase segregation control in mixed halide and mixed cation perovskite films: Synergistic effects of Cs and Rb (Conference Presentation) Aqueous processing of Ag-nanowire electrodes on top of semi-transparent perovskite solar cells (Conference Presentation) Investigations on band structure engineering in organic semiconductors (Conference Presentation)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1