基于数据滤波递归最小二乘算法验证模型的Box-Jenkins系统故障检测

N. A. Shashoa, A. Abougarair
{"title":"基于数据滤波递归最小二乘算法验证模型的Box-Jenkins系统故障检测","authors":"N. A. Shashoa, A. Abougarair","doi":"10.1109/GC-ElecEng52322.2021.9788358","DOIUrl":null,"url":null,"abstract":"In this paper, the data filtering based Recursive Least Squares algorithm (RLS) of linear Box-Jenkins systems is proposed for fault detection. The system is decomposed into two subsystems, one containing the parameters of the system model and the other containing the parameters of the noise model, and these parameters of the system model and the noise model are estimated. The model validation is tested using two statistical methods, histogram and mean square errors. The residual is generated based on the proposed algorithm to design the threshold and therefore, this design is used for fault detection. Simulation results are performed to illustrate the algorithm performance.","PeriodicalId":344268,"journal":{"name":"2021 Global Congress on Electrical Engineering (GC-ElecEng)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault Detection Based on Validated Model of Data Filtering Based Recursive Least Squares Algorithm For Box-Jenkins Systems\",\"authors\":\"N. A. Shashoa, A. Abougarair\",\"doi\":\"10.1109/GC-ElecEng52322.2021.9788358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the data filtering based Recursive Least Squares algorithm (RLS) of linear Box-Jenkins systems is proposed for fault detection. The system is decomposed into two subsystems, one containing the parameters of the system model and the other containing the parameters of the noise model, and these parameters of the system model and the noise model are estimated. The model validation is tested using two statistical methods, histogram and mean square errors. The residual is generated based on the proposed algorithm to design the threshold and therefore, this design is used for fault detection. Simulation results are performed to illustrate the algorithm performance.\",\"PeriodicalId\":344268,\"journal\":{\"name\":\"2021 Global Congress on Electrical Engineering (GC-ElecEng)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Global Congress on Electrical Engineering (GC-ElecEng)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GC-ElecEng52322.2021.9788358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Global Congress on Electrical Engineering (GC-ElecEng)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GC-ElecEng52322.2021.9788358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了基于数据滤波的线性Box-Jenkins系统递归最小二乘算法(RLS)用于故障检测。将系统分解为两个子系统,一个包含系统模型参数,另一个包含噪声模型参数,并对系统模型和噪声模型的这些参数进行估计。采用直方图和均方误差两种统计方法检验模型的有效性。根据所提出的算法生成残差来设计阈值,因此,该设计可用于故障检测。仿真结果验证了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault Detection Based on Validated Model of Data Filtering Based Recursive Least Squares Algorithm For Box-Jenkins Systems
In this paper, the data filtering based Recursive Least Squares algorithm (RLS) of linear Box-Jenkins systems is proposed for fault detection. The system is decomposed into two subsystems, one containing the parameters of the system model and the other containing the parameters of the noise model, and these parameters of the system model and the noise model are estimated. The model validation is tested using two statistical methods, histogram and mean square errors. The residual is generated based on the proposed algorithm to design the threshold and therefore, this design is used for fault detection. Simulation results are performed to illustrate the algorithm performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency and Radiation Pattern Reconfigurable Multiband Microstrip Monopole Antenna Performance Evaluation of Blockchain Consensus Algorithms for Electronic Health Record Sharing Tracking Control of a Piezoelectric Actuator with Hysteresis Compensation Using Fuzzy Logic with Feed-Forward Controller UHF Radio Extender System for Ship to Shore Communications Using 3D SBR for Positioning Bicycle Sharing System Using an IoT Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1