基于Kriging响应面法的电动汽车电池组结构响应预测与质量优化研究

Deepak Sreedhar Kanakandath, Sankha Subhra Jana, Arunkumar Ramakrishnan
{"title":"基于Kriging响应面法的电动汽车电池组结构响应预测与质量优化研究","authors":"Deepak Sreedhar Kanakandath, Sankha Subhra Jana, Arunkumar Ramakrishnan","doi":"10.37285/ajmt.1.2.8","DOIUrl":null,"url":null,"abstract":"Structural response of battery packs in electric vehicles when subjected to road loads is an important factor that decides its performance and life during normal operation. In this paper a kriging response surface model is built using a Design of Experiment (DOE) run dataset to predict structural response and global modal frequency metrics of the battery pack. Using this Response Surface Model (RSM), we can rapidly optimize the battery pack design with respect to structural response and achieve significant mass reduction. This method reduces turnaround times for design optimization in early stages of battery pack design.","PeriodicalId":294802,"journal":{"name":"ARAI Journal of Mobility Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Using Kriging Response Surface Method for EV Battery Pack Structural Response Prediction and Mass Optimization\",\"authors\":\"Deepak Sreedhar Kanakandath, Sankha Subhra Jana, Arunkumar Ramakrishnan\",\"doi\":\"10.37285/ajmt.1.2.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural response of battery packs in electric vehicles when subjected to road loads is an important factor that decides its performance and life during normal operation. In this paper a kriging response surface model is built using a Design of Experiment (DOE) run dataset to predict structural response and global modal frequency metrics of the battery pack. Using this Response Surface Model (RSM), we can rapidly optimize the battery pack design with respect to structural response and achieve significant mass reduction. This method reduces turnaround times for design optimization in early stages of battery pack design.\",\"PeriodicalId\":294802,\"journal\":{\"name\":\"ARAI Journal of Mobility Technology\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARAI Journal of Mobility Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37285/ajmt.1.2.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARAI Journal of Mobility Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ajmt.1.2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电动汽车电池组在道路荷载作用下的结构响应是决定其正常运行性能和寿命的重要因素。本文利用试验设计(DOE)运行数据集建立了kriging响应面模型,用于预测电池组的结构响应和整体模态频率指标。利用该响应面模型(RSM),我们可以快速优化电池组的结构响应设计,并实现显著的质量降低。该方法减少了电池组设计初期设计优化的周转时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Using Kriging Response Surface Method for EV Battery Pack Structural Response Prediction and Mass Optimization
Structural response of battery packs in electric vehicles when subjected to road loads is an important factor that decides its performance and life during normal operation. In this paper a kriging response surface model is built using a Design of Experiment (DOE) run dataset to predict structural response and global modal frequency metrics of the battery pack. Using this Response Surface Model (RSM), we can rapidly optimize the battery pack design with respect to structural response and achieve significant mass reduction. This method reduces turnaround times for design optimization in early stages of battery pack design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Performance Assessment of Sizing of Electric Motor through Analytical Approach for Electric Vehicle Application Study on Various Position Sensing Technologies in Tractor Hitch Application Algorithm based Calibration Strategies in an Electric Powertrain Impact of Fused Deposition Modeling Process Parameters and Heat Treatment on Mechanical Characteristics and Product Quality: A Review Experimental Assessment of Genset Performance for PCCI-DI Combustion Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1