面向下一代神经形态计算的小尺度粒子轨迹预测的函数对函数回归

A. Joseph, Juan Wu, Kaiyan Yu, Lan Jiang, N. Cady, Bing Si
{"title":"面向下一代神经形态计算的小尺度粒子轨迹预测的函数对函数回归","authors":"A. Joseph, Juan Wu, Kaiyan Yu, Lan Jiang, N. Cady, Bing Si","doi":"10.1109/CASE49439.2021.9551532","DOIUrl":null,"url":null,"abstract":"Precise and efficient motion prediction and manipulation of micro- and nanoparticles in a complex fluid suspension system under external electric fields has the potential to revolutionize the manufacture of scalable functional nanodevices. However, the physical motion model of the particle based on physical simulation does not consider the effects in the complex fluid suspension system, e.g., boundary conditions, fluid motion, and particle interactions, and often results in imperfect prediction of particle trajectories under the coupled global field. This study proposes a data-driven approach for small-scale particle trajectory prediction by leveraging both physical simulation model and experimental data. Historical function-on-function regression is used to predict experimental trajectories from corresponding simulation trajectories. A gradient boosting algorithm is used for model estimation. Our study is the first-of-its-kind that uses historical function-on-function regression to demonstrate the efficacy of predicting experimental trajectories from simulation trajectories in small-scale particle manipulation under electrical fields, which eventually leads to the design of new automated processes for efficient and smart manufacturing of functional nanodevices towards next-generation neuromorphic computing.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Function-on-Function Regression for Trajectory Prediction of Small-Scale Particles towards Next-generation Neuromorphic Computing\",\"authors\":\"A. Joseph, Juan Wu, Kaiyan Yu, Lan Jiang, N. Cady, Bing Si\",\"doi\":\"10.1109/CASE49439.2021.9551532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise and efficient motion prediction and manipulation of micro- and nanoparticles in a complex fluid suspension system under external electric fields has the potential to revolutionize the manufacture of scalable functional nanodevices. However, the physical motion model of the particle based on physical simulation does not consider the effects in the complex fluid suspension system, e.g., boundary conditions, fluid motion, and particle interactions, and often results in imperfect prediction of particle trajectories under the coupled global field. This study proposes a data-driven approach for small-scale particle trajectory prediction by leveraging both physical simulation model and experimental data. Historical function-on-function regression is used to predict experimental trajectories from corresponding simulation trajectories. A gradient boosting algorithm is used for model estimation. Our study is the first-of-its-kind that uses historical function-on-function regression to demonstrate the efficacy of predicting experimental trajectories from simulation trajectories in small-scale particle manipulation under electrical fields, which eventually leads to the design of new automated processes for efficient and smart manufacturing of functional nanodevices towards next-generation neuromorphic computing.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在外加电场作用下,对复杂流体悬浮系统中微粒子和纳米粒子进行精确、高效的运动预测和操作,有可能彻底改变可扩展功能纳米器件的制造。然而,基于物理模拟的粒子物理运动模型没有考虑复杂流体悬浮系统中的边界条件、流体运动、粒子相互作用等影响,往往导致耦合全局场下粒子运动轨迹的预测不完善。本研究提出了一种利用物理模拟模型和实验数据进行小尺度粒子轨迹预测的数据驱动方法。使用历史函数对函数回归从相应的模拟轨迹预测实验轨迹。采用梯度增强算法对模型进行估计。我们的研究是同类研究中首次使用历史函数对函数回归来证明从电场下小尺度粒子操作的模拟轨迹预测实验轨迹的有效性,这最终导致设计新的自动化过程,用于高效和智能制造功能纳米器件,以实现下一代神经形态计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Function-on-Function Regression for Trajectory Prediction of Small-Scale Particles towards Next-generation Neuromorphic Computing
Precise and efficient motion prediction and manipulation of micro- and nanoparticles in a complex fluid suspension system under external electric fields has the potential to revolutionize the manufacture of scalable functional nanodevices. However, the physical motion model of the particle based on physical simulation does not consider the effects in the complex fluid suspension system, e.g., boundary conditions, fluid motion, and particle interactions, and often results in imperfect prediction of particle trajectories under the coupled global field. This study proposes a data-driven approach for small-scale particle trajectory prediction by leveraging both physical simulation model and experimental data. Historical function-on-function regression is used to predict experimental trajectories from corresponding simulation trajectories. A gradient boosting algorithm is used for model estimation. Our study is the first-of-its-kind that uses historical function-on-function regression to demonstrate the efficacy of predicting experimental trajectories from simulation trajectories in small-scale particle manipulation under electrical fields, which eventually leads to the design of new automated processes for efficient and smart manufacturing of functional nanodevices towards next-generation neuromorphic computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1