Negin Amirshirzad, Begum Sunal, O. Bebek, Erhan Öztop
{"title":"自主缝合的医学缝合基元学习","authors":"Negin Amirshirzad, Begum Sunal, O. Bebek, Erhan Öztop","doi":"10.1109/CASE49439.2021.9551415","DOIUrl":null,"url":null,"abstract":"This paper focuses on a learning from demonstration approach for autonomous medical suturing. A conditional neural network is used to learn and generate suturing primitives trajectories which were conditioned on desired context points. Using our designed GUI a user could plan and select suturing insertion points. Given the insertion point our model generates joint trajectories on real time satisfying this condition. The generated trajectories combined with a kinematic feedback loop were used to drive an 11-DOF robotic system and shows satisfying abilities to learn and perform suturing primitives autonomously having only a few demonstrations of the movements.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Medical Suturing Primitives for Autonomous Suturing\",\"authors\":\"Negin Amirshirzad, Begum Sunal, O. Bebek, Erhan Öztop\",\"doi\":\"10.1109/CASE49439.2021.9551415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on a learning from demonstration approach for autonomous medical suturing. A conditional neural network is used to learn and generate suturing primitives trajectories which were conditioned on desired context points. Using our designed GUI a user could plan and select suturing insertion points. Given the insertion point our model generates joint trajectories on real time satisfying this condition. The generated trajectories combined with a kinematic feedback loop were used to drive an 11-DOF robotic system and shows satisfying abilities to learn and perform suturing primitives autonomously having only a few demonstrations of the movements.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning Medical Suturing Primitives for Autonomous Suturing
This paper focuses on a learning from demonstration approach for autonomous medical suturing. A conditional neural network is used to learn and generate suturing primitives trajectories which were conditioned on desired context points. Using our designed GUI a user could plan and select suturing insertion points. Given the insertion point our model generates joint trajectories on real time satisfying this condition. The generated trajectories combined with a kinematic feedback loop were used to drive an 11-DOF robotic system and shows satisfying abilities to learn and perform suturing primitives autonomously having only a few demonstrations of the movements.