{"title":"利用金属纳米粒子优化薄膜硅太阳能电池的光捕获","authors":"Zihuan Xia, Yonggang Wu, Yingzhuang Ma, Leijie Ling, G. Lv, Heyun Wu","doi":"10.1117/12.887555","DOIUrl":null,"url":null,"abstract":"Detailed design for nanoparticle plasmons-enhanced solar cells is presented in this article. Optimal structure for the max enhancement from the nanoparticle arrays is investigated by varying the size, shape and period of the nanoparticle, and thickness of Si absorber. Tolerance of the nanoparticle arrays provides guidance for fabrication in practice. Contribution of front and back structure as well as the nanoparticle arrays to the photocurrent is analyzed respectively. After optimization short circuit current density attains 20mA/cm2 with a 185% enhancement compared to that of the 700nm thick Si.","PeriodicalId":316559,"journal":{"name":"International Conference on Thin Film Physics and Applications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized light trapping in thin film silicon solar cells by metal nanoparticle\",\"authors\":\"Zihuan Xia, Yonggang Wu, Yingzhuang Ma, Leijie Ling, G. Lv, Heyun Wu\",\"doi\":\"10.1117/12.887555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detailed design for nanoparticle plasmons-enhanced solar cells is presented in this article. Optimal structure for the max enhancement from the nanoparticle arrays is investigated by varying the size, shape and period of the nanoparticle, and thickness of Si absorber. Tolerance of the nanoparticle arrays provides guidance for fabrication in practice. Contribution of front and back structure as well as the nanoparticle arrays to the photocurrent is analyzed respectively. After optimization short circuit current density attains 20mA/cm2 with a 185% enhancement compared to that of the 700nm thick Si.\",\"PeriodicalId\":316559,\"journal\":{\"name\":\"International Conference on Thin Film Physics and Applications\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Thin Film Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.887555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.887555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized light trapping in thin film silicon solar cells by metal nanoparticle
Detailed design for nanoparticle plasmons-enhanced solar cells is presented in this article. Optimal structure for the max enhancement from the nanoparticle arrays is investigated by varying the size, shape and period of the nanoparticle, and thickness of Si absorber. Tolerance of the nanoparticle arrays provides guidance for fabrication in practice. Contribution of front and back structure as well as the nanoparticle arrays to the photocurrent is analyzed respectively. After optimization short circuit current density attains 20mA/cm2 with a 185% enhancement compared to that of the 700nm thick Si.