一个神经网络的多芯片模块实现

M. G. Stout, L. Salmon, G. Rudolph, T. Martinez
{"title":"一个神经网络的多芯片模块实现","authors":"M. G. Stout, L. Salmon, G. Rudolph, T. Martinez","doi":"10.1109/MCMC.1994.292532","DOIUrl":null,"url":null,"abstract":"The requirement for dense interconnect in artificial neural network systems has led researchers to seek high-density interconnect technologies. This paper reports an implementation using multi-chip modules (MCMs) as the interconnect medium. The specific system described is a self-organizing, parallel, and dynamic learning model which requires a dense interconnect technology for effective implementation; this requirement is fulfilled by exploiting MCM technology. The ideas presented in this paper regarding an MCM implementation of artificial neural networks are versatile and can be adapted to apply to other neural network and connectionist models.<<ETX>>","PeriodicalId":292463,"journal":{"name":"Proceedings of IEEE Multi-Chip Module Conference (MCMC-94)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A multi-chip module implementation of a neural network\",\"authors\":\"M. G. Stout, L. Salmon, G. Rudolph, T. Martinez\",\"doi\":\"10.1109/MCMC.1994.292532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The requirement for dense interconnect in artificial neural network systems has led researchers to seek high-density interconnect technologies. This paper reports an implementation using multi-chip modules (MCMs) as the interconnect medium. The specific system described is a self-organizing, parallel, and dynamic learning model which requires a dense interconnect technology for effective implementation; this requirement is fulfilled by exploiting MCM technology. The ideas presented in this paper regarding an MCM implementation of artificial neural networks are versatile and can be adapted to apply to other neural network and connectionist models.<<ETX>>\",\"PeriodicalId\":292463,\"journal\":{\"name\":\"Proceedings of IEEE Multi-Chip Module Conference (MCMC-94)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Multi-Chip Module Conference (MCMC-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCMC.1994.292532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Multi-Chip Module Conference (MCMC-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCMC.1994.292532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人工神经网络系统对高密度互连的要求促使研究者们寻求高密度互连技术。本文报道了一种采用多芯片模块(mcm)作为互连介质的实现方法。所描述的具体系统是一个自组织、并行和动态的学习模型,需要密集的互连技术才能有效实现;利用MCM技术实现了这一要求。本文提出的关于人工神经网络的MCM实现的思想是通用的,可以适用于其他神经网络和连接主义模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-chip module implementation of a neural network
The requirement for dense interconnect in artificial neural network systems has led researchers to seek high-density interconnect technologies. This paper reports an implementation using multi-chip modules (MCMs) as the interconnect medium. The specific system described is a self-organizing, parallel, and dynamic learning model which requires a dense interconnect technology for effective implementation; this requirement is fulfilled by exploiting MCM technology. The ideas presented in this paper regarding an MCM implementation of artificial neural networks are versatile and can be adapted to apply to other neural network and connectionist models.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The ARPA (ASEM) MCM brokerage service Latent open testing of electronic packaging Modeling of Delta-I noise in digital electronics packaging A pragmatic test and diagnosis methodology for partially testable MCMs A silicon-on-silicon multichip module technology with integrated bipolar components in the substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1