临床进展记录文本挖掘中数据质量的案例研究

D. Berndt, J. McCart, Dezon K. Finch, S. Luther
{"title":"临床进展记录文本挖掘中数据质量的案例研究","authors":"D. Berndt, J. McCart, Dezon K. Finch, S. Luther","doi":"10.1145/2669368","DOIUrl":null,"url":null,"abstract":"Text analytic methods are often aimed at extracting useful information from the vast array of unstructured, free format text documents that are created by almost all organizational processes. The success of any text mining application rests on the quality of the underlying data being analyzed, including both predictive features and outcome labels. In this case study, some focused experiments regarding data quality are used to assess the robustness of Statistical Text Mining (STM) algorithms when applied to clinical progress notes. In particular, the experiments consider the impacts of task complexity (by removing signals), training set size, and target outcome quality. While this research is conducted using a dataset drawn from the medical domain, the data quality issues explored are of more general interest.","PeriodicalId":178565,"journal":{"name":"ACM Trans. Manag. Inf. Syst.","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Case Study of Data Quality in Text Mining Clinical Progress Notes\",\"authors\":\"D. Berndt, J. McCart, Dezon K. Finch, S. Luther\",\"doi\":\"10.1145/2669368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text analytic methods are often aimed at extracting useful information from the vast array of unstructured, free format text documents that are created by almost all organizational processes. The success of any text mining application rests on the quality of the underlying data being analyzed, including both predictive features and outcome labels. In this case study, some focused experiments regarding data quality are used to assess the robustness of Statistical Text Mining (STM) algorithms when applied to clinical progress notes. In particular, the experiments consider the impacts of task complexity (by removing signals), training set size, and target outcome quality. While this research is conducted using a dataset drawn from the medical domain, the data quality issues explored are of more general interest.\",\"PeriodicalId\":178565,\"journal\":{\"name\":\"ACM Trans. Manag. Inf. Syst.\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Manag. Inf. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2669368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Manag. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2669368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

文本分析方法通常旨在从几乎所有组织过程创建的大量非结构化、自由格式的文本文档中提取有用的信息。任何文本挖掘应用程序的成功都取决于所分析的底层数据的质量,包括预测特征和结果标签。在本案例研究中,一些关于数据质量的重点实验被用来评估统计文本挖掘(STM)算法在应用于临床进展记录时的鲁棒性。特别是,实验考虑了任务复杂性(通过去除信号)、训练集大小和目标结果质量的影响。虽然本研究是使用来自医学领域的数据集进行的,但所探索的数据质量问题具有更普遍的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Case Study of Data Quality in Text Mining Clinical Progress Notes
Text analytic methods are often aimed at extracting useful information from the vast array of unstructured, free format text documents that are created by almost all organizational processes. The success of any text mining application rests on the quality of the underlying data being analyzed, including both predictive features and outcome labels. In this case study, some focused experiments regarding data quality are used to assess the robustness of Statistical Text Mining (STM) algorithms when applied to clinical progress notes. In particular, the experiments consider the impacts of task complexity (by removing signals), training set size, and target outcome quality. While this research is conducted using a dataset drawn from the medical domain, the data quality issues explored are of more general interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Social Media to Analyze Public Concerns and Policy Responses to COVID-19 in Hong Kong COVID-Safe Spatial Occupancy Monitoring Using OFDM-Based Features and Passive WiFi Samples SymptomID: A Framework for Rapid Symptom Identification in Pandemics Using News Reports Leveraging Individual and Collective Regularity to Profile and Segment User Locations from Mobile Phone Data Write Like a Pro or an Amateur? Effect of Medical Language Formality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1