将帕累托尾拟合到财富调查数据:从业者指南

Rafael Wildauer, Jakob Kapeller
{"title":"将帕累托尾拟合到财富调查数据:从业者指南","authors":"Rafael Wildauer, Jakob Kapeller","doi":"10.25071/1874-6322.40447","DOIUrl":null,"url":null,"abstract":"\n\n\nTaking survey data of household wealth as our major example, this short article discusses some of the issues applied researchers are facing when fitting (Type I) Pareto distributions to complex survey data. The contribution of this article is threefold. First, we show how the ordering of the data vector is related to alternative definitions of the empirical CCDF. Second, we provide an intuitive reinterpretation of the bias-corrected estimator developed by Gabaix and Ibragimov (2011), in terms of the alternative definitions of the empirical CCDF, which allows us to generalize their result to the case of complex survey data. Third, we provide computational formulas for standard Kolmogorov-Smirnov (KS) and Cramer-von Mises (CvM) goodness- of-fit tests for complex survey data. Taken together the article provides a concise and hopefully useful presentation of the fundamentals of Pareto tail- fitting with complex survey data.\n\n\n","PeriodicalId":142300,"journal":{"name":"Journal of Income Distribution®","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fitting Pareto Tails to Wealth Survey Data: A Practioners’ Guide\",\"authors\":\"Rafael Wildauer, Jakob Kapeller\",\"doi\":\"10.25071/1874-6322.40447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nTaking survey data of household wealth as our major example, this short article discusses some of the issues applied researchers are facing when fitting (Type I) Pareto distributions to complex survey data. The contribution of this article is threefold. First, we show how the ordering of the data vector is related to alternative definitions of the empirical CCDF. Second, we provide an intuitive reinterpretation of the bias-corrected estimator developed by Gabaix and Ibragimov (2011), in terms of the alternative definitions of the empirical CCDF, which allows us to generalize their result to the case of complex survey data. Third, we provide computational formulas for standard Kolmogorov-Smirnov (KS) and Cramer-von Mises (CvM) goodness- of-fit tests for complex survey data. Taken together the article provides a concise and hopefully useful presentation of the fundamentals of Pareto tail- fitting with complex survey data.\\n\\n\\n\",\"PeriodicalId\":142300,\"journal\":{\"name\":\"Journal of Income Distribution®\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Income Distribution®\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25071/1874-6322.40447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Income Distribution®","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25071/1874-6322.40447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文以家庭财富调查数据为例,讨论了应用研究人员在对复杂调查数据拟合(I型)帕累托分布时面临的一些问题。这篇文章的贡献有三个方面。首先,我们展示了数据向量的排序如何与经验CCDF的替代定义相关。其次,根据经验CCDF的替代定义,我们对Gabaix和Ibragimov(2011)开发的偏差校正估计量进行了直观的重新解释,这使我们能够将其结果推广到复杂调查数据的情况下。第三,我们提供了复杂调查数据的标准Kolmogorov-Smirnov (KS)和Cramer-von Mises (CvM)拟合优度检验的计算公式。综上所述,本文提供了一个简洁的,希望有用的帕累托尾拟合的基本原理与复杂的调查数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fitting Pareto Tails to Wealth Survey Data: A Practioners’ Guide
Taking survey data of household wealth as our major example, this short article discusses some of the issues applied researchers are facing when fitting (Type I) Pareto distributions to complex survey data. The contribution of this article is threefold. First, we show how the ordering of the data vector is related to alternative definitions of the empirical CCDF. Second, we provide an intuitive reinterpretation of the bias-corrected estimator developed by Gabaix and Ibragimov (2011), in terms of the alternative definitions of the empirical CCDF, which allows us to generalize their result to the case of complex survey data. Third, we provide computational formulas for standard Kolmogorov-Smirnov (KS) and Cramer-von Mises (CvM) goodness- of-fit tests for complex survey data. Taken together the article provides a concise and hopefully useful presentation of the fundamentals of Pareto tail- fitting with complex survey data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Axioms and Intuitions about Societal Inequality Does vulnerable employment narrow income inequality? Evidence from developing countries The Impact of Microfinance on Poverty and Income Inequality Return Migration and Earnings Mobility in the Middle East and North Africa The micro-macro gap for capital income in the Eurozone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1