多功能随钻测井中子发生器数据驱动退化建模方法

A. Mosallam, Fares Ben Youssef, Karolina Sobczak-Oramus, Jinlong Kang, Vikrant Gupta, Nannan Shen, L. Laval
{"title":"多功能随钻测井中子发生器数据驱动退化建模方法","authors":"A. Mosallam, Fares Ben Youssef, Karolina Sobczak-Oramus, Jinlong Kang, Vikrant Gupta, Nannan Shen, L. Laval","doi":"10.1109/PHM58589.2023.00027","DOIUrl":null,"url":null,"abstract":"This paper presents a novel data-driven approach for modeling degradation of the neutron generator component in logging-while-drilling tools. The study begins by identifying the incipient failure modes of the neutron generator and constructing a health indicator (HI) that serves as a quantitative measure of the component’s health status. The resulting HI can be used for additional analysis and decision-making. Then, a random forest classifier is trained to establish the relationship between the extracted HI values and the corresponding degradation level labels. The proposed method is validated using actual data collected from oil well drilling operations. The experimental results demonstrate its effectiveness in accurately classifying the health state of the neutron generator component. The study is part of a long-term project aimed at developing a digital fleet management system for drilling tools.","PeriodicalId":196601,"journal":{"name":"2023 Prognostics and Health Management Conference (PHM)","volume":"456 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Degradation Modeling Approach for Neutron Generators in Multifunction Logging-While-Drilling Service\",\"authors\":\"A. Mosallam, Fares Ben Youssef, Karolina Sobczak-Oramus, Jinlong Kang, Vikrant Gupta, Nannan Shen, L. Laval\",\"doi\":\"10.1109/PHM58589.2023.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel data-driven approach for modeling degradation of the neutron generator component in logging-while-drilling tools. The study begins by identifying the incipient failure modes of the neutron generator and constructing a health indicator (HI) that serves as a quantitative measure of the component’s health status. The resulting HI can be used for additional analysis and decision-making. Then, a random forest classifier is trained to establish the relationship between the extracted HI values and the corresponding degradation level labels. The proposed method is validated using actual data collected from oil well drilling operations. The experimental results demonstrate its effectiveness in accurately classifying the health state of the neutron generator component. The study is part of a long-term project aimed at developing a digital fleet management system for drilling tools.\",\"PeriodicalId\":196601,\"journal\":{\"name\":\"2023 Prognostics and Health Management Conference (PHM)\",\"volume\":\"456 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Prognostics and Health Management Conference (PHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM58589.2023.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Prognostics and Health Management Conference (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM58589.2023.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的数据驱动方法,用于随钻测井工具中中子发生器部件的退化建模。研究首先确定了中子发生器的早期失效模式,并构建了一个健康指示器(HI),作为组件健康状态的定量测量。得到的HI可用于其他分析和决策。然后,训练随机森林分类器来建立提取的HI值与相应的退化水平标签之间的关系。通过实际油井钻井数据验证了该方法的有效性。实验结果表明,该方法对中子发生器部件的健康状态进行准确分类是有效的。该研究是一项长期项目的一部分,该项目旨在开发钻井工具的数字化车队管理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Degradation Modeling Approach for Neutron Generators in Multifunction Logging-While-Drilling Service
This paper presents a novel data-driven approach for modeling degradation of the neutron generator component in logging-while-drilling tools. The study begins by identifying the incipient failure modes of the neutron generator and constructing a health indicator (HI) that serves as a quantitative measure of the component’s health status. The resulting HI can be used for additional analysis and decision-making. Then, a random forest classifier is trained to establish the relationship between the extracted HI values and the corresponding degradation level labels. The proposed method is validated using actual data collected from oil well drilling operations. The experimental results demonstrate its effectiveness in accurately classifying the health state of the neutron generator component. The study is part of a long-term project aimed at developing a digital fleet management system for drilling tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOA analysis of large hydropower station Generating High-Resolution Flight Parameters in Structural Digital Twins Using Deep Learning-based Upsampling Problem Decoupling and Optimization of Aeroengine Life Cycle Maintenance Decision State-of-health prediction of Li-ion NMC Batteries Using Kalman Filter and Gaussian Process Regression An efficient algorithm for task allocation with multi-agent collaboration constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1