电路模拟器中GaN场效应管负载-拉力数据的比较研究

G. Avolio, A. Raffo, M. Marchetti, G. Bosi, V. Vadalà, G. Vannini
{"title":"电路模拟器中GaN场效应管负载-拉力数据的比较研究","authors":"G. Avolio, A. Raffo, M. Marchetti, G. Bosi, V. Vadalà, G. Vannini","doi":"10.23919/EuMIC.2019.8909451","DOIUrl":null,"url":null,"abstract":"We compared two approaches to use high-frequency transistor load-pull data directly into a circuit simulator. One approach is based on Artificial Neural Networks (ANN), the other on look-up tables (LUT). We discuss some practical aspects, including implementation in the CAD environment and extrapolation capability.","PeriodicalId":228725,"journal":{"name":"2019 14th European Microwave Integrated Circuits Conference (EuMIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"GaN FET Load-Pull Data in Circuit Simulators: a Comparative Study\",\"authors\":\"G. Avolio, A. Raffo, M. Marchetti, G. Bosi, V. Vadalà, G. Vannini\",\"doi\":\"10.23919/EuMIC.2019.8909451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compared two approaches to use high-frequency transistor load-pull data directly into a circuit simulator. One approach is based on Artificial Neural Networks (ANN), the other on look-up tables (LUT). We discuss some practical aspects, including implementation in the CAD environment and extrapolation capability.\",\"PeriodicalId\":228725,\"journal\":{\"name\":\"2019 14th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EuMIC.2019.8909451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EuMIC.2019.8909451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们比较了两种直接在电路模拟器中使用高频晶体管负载-拉力数据的方法。一种方法是基于人工神经网络(ANN),另一种方法是基于查找表(LUT)。我们讨论了一些实际方面,包括在CAD环境中的实现和外推能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GaN FET Load-Pull Data in Circuit Simulators: a Comparative Study
We compared two approaches to use high-frequency transistor load-pull data directly into a circuit simulator. One approach is based on Artificial Neural Networks (ANN), the other on look-up tables (LUT). We discuss some practical aspects, including implementation in the CAD environment and extrapolation capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Robustness S-Band GaN Based LNA A 5 to 18GHz, 10W GaN Power Amplifier Using Non-Distributed Approach A High-Speed Millimeter-Wave QPSK Transmitter in 28nm CMOS FD-SOI for Polymer Microwave Fibers Applications Simple Microwave Measurement System Using Bi-Directional Configuration of VCSEL and PD-TIA from 6 to 16 GHz Ultralow Power, 3.15 mW, 76.7 GHz Digitally Controlled Oscillator in 65 nm CMOS for High Data-Rate Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1