{"title":"DNA喷墨打印在生物电子学中的应用","authors":"K.M. Singh, L. Brott, J. Grote, R. Naik","doi":"10.1109/NAECON.2008.4806527","DOIUrl":null,"url":null,"abstract":"Biopolymers have received much attention lately for use in electronic applications. Salmon DNA complexed with cetyltrimethyl ammonium chloride (DNA-CTMA) produces a material soluble in organic solvents, enhancing the ease of processing. DNA-CTMA has shown promise as an electron blocking layer in organic light emitting diodes (OLEDs) and potential as a gate insulating material in field effect transistors (FETs). To realize an all bio-based FET, we are continuing to investigate the use of DNA as the semiconducting layer. In addition to tailoring the properties of the biomaterial to increase the conductivity, we are also trying to better characterize these materials and explore different deposition techniques. Inkjet printing offers an unique ability to reproducibly deposit materials in a spatially controlled fashion, using picoliter amounts with high throughput. This paper will present how parameters such as solvent evaporation rate and substrate influence film properties. The characterization of the resulting DNA films includes atomic force microscopy (AFM) and white light interferometry.","PeriodicalId":254758,"journal":{"name":"2008 IEEE National Aerospace and Electronics Conference","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inkjet Printing of DNA for Use in Bioelectronic Applications\",\"authors\":\"K.M. Singh, L. Brott, J. Grote, R. Naik\",\"doi\":\"10.1109/NAECON.2008.4806527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biopolymers have received much attention lately for use in electronic applications. Salmon DNA complexed with cetyltrimethyl ammonium chloride (DNA-CTMA) produces a material soluble in organic solvents, enhancing the ease of processing. DNA-CTMA has shown promise as an electron blocking layer in organic light emitting diodes (OLEDs) and potential as a gate insulating material in field effect transistors (FETs). To realize an all bio-based FET, we are continuing to investigate the use of DNA as the semiconducting layer. In addition to tailoring the properties of the biomaterial to increase the conductivity, we are also trying to better characterize these materials and explore different deposition techniques. Inkjet printing offers an unique ability to reproducibly deposit materials in a spatially controlled fashion, using picoliter amounts with high throughput. This paper will present how parameters such as solvent evaporation rate and substrate influence film properties. The characterization of the resulting DNA films includes atomic force microscopy (AFM) and white light interferometry.\",\"PeriodicalId\":254758,\"journal\":{\"name\":\"2008 IEEE National Aerospace and Electronics Conference\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2008.4806527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2008.4806527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inkjet Printing of DNA for Use in Bioelectronic Applications
Biopolymers have received much attention lately for use in electronic applications. Salmon DNA complexed with cetyltrimethyl ammonium chloride (DNA-CTMA) produces a material soluble in organic solvents, enhancing the ease of processing. DNA-CTMA has shown promise as an electron blocking layer in organic light emitting diodes (OLEDs) and potential as a gate insulating material in field effect transistors (FETs). To realize an all bio-based FET, we are continuing to investigate the use of DNA as the semiconducting layer. In addition to tailoring the properties of the biomaterial to increase the conductivity, we are also trying to better characterize these materials and explore different deposition techniques. Inkjet printing offers an unique ability to reproducibly deposit materials in a spatially controlled fashion, using picoliter amounts with high throughput. This paper will present how parameters such as solvent evaporation rate and substrate influence film properties. The characterization of the resulting DNA films includes atomic force microscopy (AFM) and white light interferometry.