{"title":"基于Contourlet直方图的梯度特征描述加权多模态生物特征识别算法","authors":"Xinman Zhang, Dongxu Cheng, Xuebin Xu","doi":"10.15439/2019F178","DOIUrl":null,"url":null,"abstract":"Although the unimodal biometric recognition (such as face and palmprint) has higher convenience, its security is also relatively weak. The recognition accuracy is easy affected by many factors such as ambient light and recognition distance etc. To address this issue, we present a weighted multimodal biometric recognition algorithm with face and palmprint based on histogram of contourlet oriented gradient (HCOG) feature description. We employ the nonsubsampled contour transform (NSCT) to decompose the face and palmprint images, and the HOG method is adopted to extract the feature, which is named as HCOG feature. Then the dimension reduction process is applied on the HCOG feature and a novel weight value computation method is proposed to accomplish the multimodal biometric fusion recognition. Extensive experiments illustrate that our proposed weighted fusion recognition can achieve excellent recognition accuracy rates and outmatches the unimodal biometric recognition methods.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"54 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Weighted Multimodal Biometric Recognition Algorithm Based on Histogram of Contourlet Oriented Gradient Feature Description\",\"authors\":\"Xinman Zhang, Dongxu Cheng, Xuebin Xu\",\"doi\":\"10.15439/2019F178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the unimodal biometric recognition (such as face and palmprint) has higher convenience, its security is also relatively weak. The recognition accuracy is easy affected by many factors such as ambient light and recognition distance etc. To address this issue, we present a weighted multimodal biometric recognition algorithm with face and palmprint based on histogram of contourlet oriented gradient (HCOG) feature description. We employ the nonsubsampled contour transform (NSCT) to decompose the face and palmprint images, and the HOG method is adopted to extract the feature, which is named as HCOG feature. Then the dimension reduction process is applied on the HCOG feature and a novel weight value computation method is proposed to accomplish the multimodal biometric fusion recognition. Extensive experiments illustrate that our proposed weighted fusion recognition can achieve excellent recognition accuracy rates and outmatches the unimodal biometric recognition methods.\",\"PeriodicalId\":168208,\"journal\":{\"name\":\"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"volume\":\"54 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15439/2019F178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weighted Multimodal Biometric Recognition Algorithm Based on Histogram of Contourlet Oriented Gradient Feature Description
Although the unimodal biometric recognition (such as face and palmprint) has higher convenience, its security is also relatively weak. The recognition accuracy is easy affected by many factors such as ambient light and recognition distance etc. To address this issue, we present a weighted multimodal biometric recognition algorithm with face and palmprint based on histogram of contourlet oriented gradient (HCOG) feature description. We employ the nonsubsampled contour transform (NSCT) to decompose the face and palmprint images, and the HOG method is adopted to extract the feature, which is named as HCOG feature. Then the dimension reduction process is applied on the HCOG feature and a novel weight value computation method is proposed to accomplish the multimodal biometric fusion recognition. Extensive experiments illustrate that our proposed weighted fusion recognition can achieve excellent recognition accuracy rates and outmatches the unimodal biometric recognition methods.