基于空间谱- lstm神经网络的微弱信号检测方法

Yaning Dong, Chuanzhang Wu, Huizhu Zhu, Feng Xu, Xin Ren
{"title":"基于空间谱- lstm神经网络的微弱信号检测方法","authors":"Yaning Dong, Chuanzhang Wu, Huizhu Zhu, Feng Xu, Xin Ren","doi":"10.1109/ICICSP55539.2022.10050602","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a weak signal detection method based on spatial spectrum-long short-term memory (LSTM) neural network to address the problem that the traditional blind detection method of weak signals is not effective in the condition of low signal-to-noise ratios. We firstly exploit the difference between the spatial spectrum transformed signal and noise to determine whether there is a weak signal. Then, the LSTM neural network is used for feature learning to classify different samples. It can avoid the influence of the detection threshold on the detection performance of the system. Numerical results show that the detection performance of our method outperforms LSTM neural network, radial basis function neural network, traditional maximum-minimum eigenvalue, and energy detection methods.","PeriodicalId":281095,"journal":{"name":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Weak Signal Detection Method Based on Spatial Spectrum-LSTM Neural Network\",\"authors\":\"Yaning Dong, Chuanzhang Wu, Huizhu Zhu, Feng Xu, Xin Ren\",\"doi\":\"10.1109/ICICSP55539.2022.10050602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a weak signal detection method based on spatial spectrum-long short-term memory (LSTM) neural network to address the problem that the traditional blind detection method of weak signals is not effective in the condition of low signal-to-noise ratios. We firstly exploit the difference between the spatial spectrum transformed signal and noise to determine whether there is a weak signal. Then, the LSTM neural network is used for feature learning to classify different samples. It can avoid the influence of the detection threshold on the detection performance of the system. Numerical results show that the detection performance of our method outperforms LSTM neural network, radial basis function neural network, traditional maximum-minimum eigenvalue, and energy detection methods.\",\"PeriodicalId\":281095,\"journal\":{\"name\":\"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICSP55539.2022.10050602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSP55539.2022.10050602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对传统微弱信号盲检测方法在低信噪比条件下效果不佳的问题,提出了一种基于空间频谱-长短时记忆(LSTM)神经网络的微弱信号检测方法。我们首先利用空间频谱变换后的信号与噪声之间的差异来判断是否存在弱信号。然后,利用LSTM神经网络进行特征学习,对不同的样本进行分类。它可以避免检测阈值对系统检测性能的影响。数值结果表明,该方法的检测性能优于LSTM神经网络、径向基函数神经网络、传统的最大最小特征值和能量检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Weak Signal Detection Method Based on Spatial Spectrum-LSTM Neural Network
In this paper, we propose a weak signal detection method based on spatial spectrum-long short-term memory (LSTM) neural network to address the problem that the traditional blind detection method of weak signals is not effective in the condition of low signal-to-noise ratios. We firstly exploit the difference between the spatial spectrum transformed signal and noise to determine whether there is a weak signal. Then, the LSTM neural network is used for feature learning to classify different samples. It can avoid the influence of the detection threshold on the detection performance of the system. Numerical results show that the detection performance of our method outperforms LSTM neural network, radial basis function neural network, traditional maximum-minimum eigenvalue, and energy detection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Waveform Design and Processing for Joint Detection and Communication Based on MIMO Sonar Systems Joint Angle and Range Estimation with FDA-MIMO Radar in Unknown Mutual Coupling Acoustic Scene Classification for Bone-Conducted Sound Using Transfer Learning and Feature Fusion A Novel Machine Learning Algorithm: Music Arrangement and Timbre Transfer System An Element Selection Enhanced Hybrid Relay-RIS Assisted Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1