Kunlin Li, Y. Zhang, Wei Zhong, Xiaochuan Deng, Xiao Yang, Hang Chen, Bo Zhang
{"title":"一种新的具有突出p基和JFET上方台面的SiC分栅MOSFET结构,以改善HF-FOM","authors":"Kunlin Li, Y. Zhang, Wei Zhong, Xiaochuan Deng, Xiao Yang, Hang Chen, Bo Zhang","doi":"10.1109/SSLChinaIFWS49075.2019.9019759","DOIUrl":null,"url":null,"abstract":"A novel 4H-SiC MOSFET (PM-MOSFET) for rated 3.3 kV applications is proposed, which features the protruded P-base and the mesa above JFET. Numerical simulation based on Silvaco is carried out to investigate the benefits of the proposed structure. The on-state resistance of PM-MOSFET is 11.9 mΩ·cm2, which is dramatically lower compared to on-resistance of 18.2 mΩ·cm2 of the traditional split-gate MOSFET (SG-MOSFET). The Crss of SG-MOSFET extracted at Vd = 1800 V is 17.5 pF/cm2, while the Crss of PM-MOS extracted is 6.5 pF/cm2, which is three times lower than that of the SG-MOSFET. It is demonstrated that the PM-MOSFET structure is superior to the SG-MOSFET. More importantly, the benefits above are achieved without degradation of other performances of MOSFET. As a result, the PM-MOSFET presents superior figure of merit ( HF-FOM) (Ron × Crss) than that of the SG-MOSFET. The PM-MOSFET achieves much faster switching speed than the SG-MOSFET.","PeriodicalId":315846,"journal":{"name":"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New SiC Split-gate MOSFET Structure With Protruded P-base and the Mesa above JFET for Improving HF-FOM\",\"authors\":\"Kunlin Li, Y. Zhang, Wei Zhong, Xiaochuan Deng, Xiao Yang, Hang Chen, Bo Zhang\",\"doi\":\"10.1109/SSLChinaIFWS49075.2019.9019759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel 4H-SiC MOSFET (PM-MOSFET) for rated 3.3 kV applications is proposed, which features the protruded P-base and the mesa above JFET. Numerical simulation based on Silvaco is carried out to investigate the benefits of the proposed structure. The on-state resistance of PM-MOSFET is 11.9 mΩ·cm2, which is dramatically lower compared to on-resistance of 18.2 mΩ·cm2 of the traditional split-gate MOSFET (SG-MOSFET). The Crss of SG-MOSFET extracted at Vd = 1800 V is 17.5 pF/cm2, while the Crss of PM-MOS extracted is 6.5 pF/cm2, which is three times lower than that of the SG-MOSFET. It is demonstrated that the PM-MOSFET structure is superior to the SG-MOSFET. More importantly, the benefits above are achieved without degradation of other performances of MOSFET. As a result, the PM-MOSFET presents superior figure of merit ( HF-FOM) (Ron × Crss) than that of the SG-MOSFET. The PM-MOSFET achieves much faster switching speed than the SG-MOSFET.\",\"PeriodicalId\":315846,\"journal\":{\"name\":\"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSLChinaIFWS49075.2019.9019759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSLChinaIFWS49075.2019.9019759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New SiC Split-gate MOSFET Structure With Protruded P-base and the Mesa above JFET for Improving HF-FOM
A novel 4H-SiC MOSFET (PM-MOSFET) for rated 3.3 kV applications is proposed, which features the protruded P-base and the mesa above JFET. Numerical simulation based on Silvaco is carried out to investigate the benefits of the proposed structure. The on-state resistance of PM-MOSFET is 11.9 mΩ·cm2, which is dramatically lower compared to on-resistance of 18.2 mΩ·cm2 of the traditional split-gate MOSFET (SG-MOSFET). The Crss of SG-MOSFET extracted at Vd = 1800 V is 17.5 pF/cm2, while the Crss of PM-MOS extracted is 6.5 pF/cm2, which is three times lower than that of the SG-MOSFET. It is demonstrated that the PM-MOSFET structure is superior to the SG-MOSFET. More importantly, the benefits above are achieved without degradation of other performances of MOSFET. As a result, the PM-MOSFET presents superior figure of merit ( HF-FOM) (Ron × Crss) than that of the SG-MOSFET. The PM-MOSFET achieves much faster switching speed than the SG-MOSFET.