Ronaldo Lopes Inocêncio Júnior, L. Silveira, Victor Castro Nacif de Faria, Ana Carolina Lorena
{"title":"机器学习模型预测中的正义:犯罪再犯数据案例研究","authors":"Ronaldo Lopes Inocêncio Júnior, L. Silveira, Victor Castro Nacif de Faria, Ana Carolina Lorena","doi":"10.5753/eniac.2022.227610","DOIUrl":null,"url":null,"abstract":"O uso de técnicas de Ciência de Dados e Inteligência Artificial permeia diversas áreas críticas hoje em dia. Isso inclui a lei e justiça, onde alguns modelos de decisão baseados em dados dão suporte para determinar o risco de reincidência de condenados. Este artigo analisa os dados de reincidência criminal do conjunto de dados COMPAS com técnicas de Aprendizado de Máquina. Esse conjunto de dados contém dados de criminosos nos EUA e seu risco de reincidência. Especificamente, focamos na justiça das decisões dos modelos gerados a partir desses dados em relação ao atributo de etnia dos indivíduos. Como o viés racial foi encontrado dentro do conjunto de dados como uma consequência da assimetria deste atributo em relação à variável alvo, também experimentamos um balanceamento simples do conjunto de dados em relação ao atributo etnia.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Justiça nas previsões de modelos de Aprendizado de Máquina: um estudo de caso com dados de reincidência criminal\",\"authors\":\"Ronaldo Lopes Inocêncio Júnior, L. Silveira, Victor Castro Nacif de Faria, Ana Carolina Lorena\",\"doi\":\"10.5753/eniac.2022.227610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O uso de técnicas de Ciência de Dados e Inteligência Artificial permeia diversas áreas críticas hoje em dia. Isso inclui a lei e justiça, onde alguns modelos de decisão baseados em dados dão suporte para determinar o risco de reincidência de condenados. Este artigo analisa os dados de reincidência criminal do conjunto de dados COMPAS com técnicas de Aprendizado de Máquina. Esse conjunto de dados contém dados de criminosos nos EUA e seu risco de reincidência. Especificamente, focamos na justiça das decisões dos modelos gerados a partir desses dados em relação ao atributo de etnia dos indivíduos. Como o viés racial foi encontrado dentro do conjunto de dados como uma consequência da assimetria deste atributo em relação à variável alvo, também experimentamos um balanceamento simples do conjunto de dados em relação ao atributo etnia.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Justiça nas previsões de modelos de Aprendizado de Máquina: um estudo de caso com dados de reincidência criminal
O uso de técnicas de Ciência de Dados e Inteligência Artificial permeia diversas áreas críticas hoje em dia. Isso inclui a lei e justiça, onde alguns modelos de decisão baseados em dados dão suporte para determinar o risco de reincidência de condenados. Este artigo analisa os dados de reincidência criminal do conjunto de dados COMPAS com técnicas de Aprendizado de Máquina. Esse conjunto de dados contém dados de criminosos nos EUA e seu risco de reincidência. Especificamente, focamos na justiça das decisões dos modelos gerados a partir desses dados em relação ao atributo de etnia dos indivíduos. Como o viés racial foi encontrado dentro do conjunto de dados como uma consequência da assimetria deste atributo em relação à variável alvo, também experimentamos um balanceamento simples do conjunto de dados em relação ao atributo etnia.