{"title":"干介质和液体介质中微操作力的分析","authors":"M. Gauthier, S. Régnier, P. Rougeot, N. Chaillet","doi":"10.1163/156856306777924699","DOIUrl":null,"url":null,"abstract":"During microscale object manipulation, contact (pull-off) forces and non-contact (capillary, van der Waals and electrostatic) forces determine the behaviour of the micro-objects rather than the inertial forces. The aim of this article is to give an experimental analysis of the physical phenomena at a microscopic scale in dry and liquid media. This article introduces a review of the major differences between dry and submerged micromanipulations. The theoretical influences of the medium on van der Waals forces, electrostatic forces, pull-off forces and hydrodynamic forces are presented. Experimental force measurements based on an AFM system are carried out. These experiments exhibit a correlation better than 40% between the theoretical forces and the measured forces (except for pull-off in water). Finally, some comparative experimental micromanipulation results are described and show the advantages of the liquid medium.","PeriodicalId":150257,"journal":{"name":"Journal of Micromechatronics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":"{\"title\":\"Analysis of forces for micromanipulations in dry and liquid media\",\"authors\":\"M. Gauthier, S. Régnier, P. Rougeot, N. Chaillet\",\"doi\":\"10.1163/156856306777924699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During microscale object manipulation, contact (pull-off) forces and non-contact (capillary, van der Waals and electrostatic) forces determine the behaviour of the micro-objects rather than the inertial forces. The aim of this article is to give an experimental analysis of the physical phenomena at a microscopic scale in dry and liquid media. This article introduces a review of the major differences between dry and submerged micromanipulations. The theoretical influences of the medium on van der Waals forces, electrostatic forces, pull-off forces and hydrodynamic forces are presented. Experimental force measurements based on an AFM system are carried out. These experiments exhibit a correlation better than 40% between the theoretical forces and the measured forces (except for pull-off in water). Finally, some comparative experimental micromanipulation results are described and show the advantages of the liquid medium.\",\"PeriodicalId\":150257,\"journal\":{\"name\":\"Journal of Micromechatronics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/156856306777924699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/156856306777924699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of forces for micromanipulations in dry and liquid media
During microscale object manipulation, contact (pull-off) forces and non-contact (capillary, van der Waals and electrostatic) forces determine the behaviour of the micro-objects rather than the inertial forces. The aim of this article is to give an experimental analysis of the physical phenomena at a microscopic scale in dry and liquid media. This article introduces a review of the major differences between dry and submerged micromanipulations. The theoretical influences of the medium on van der Waals forces, electrostatic forces, pull-off forces and hydrodynamic forces are presented. Experimental force measurements based on an AFM system are carried out. These experiments exhibit a correlation better than 40% between the theoretical forces and the measured forces (except for pull-off in water). Finally, some comparative experimental micromanipulation results are described and show the advantages of the liquid medium.