{"title":"一种基于数字负载电路开关模式控制的130nm混合低差稳压器","authors":"Saad Bin Nasir, Shreyas Sen, A. Raychowdhury","doi":"10.1109/ESSCIRC.2016.7598306","DOIUrl":null,"url":null,"abstract":"A hybrid (digital and analog) low dropout regulator (LDO) utilizing switched mode control is designed in 130 nm CMOS for fine grain power management, fast droop recovery and robust small signal regulation of multi-VCC digital loads. The design provides an optimal trade-off of performance and accuracy by switching between a digital and an analog control loop. The hybrid topology achieves robust small signal regulation and fast recovery from large signal transients or power state transitions. Measurements from a 130nm test-chip show Near-Threshold Voltage (NTV) operation, fast transient response of 18 ns for a load step of 10.3mA and a peak current efficiency of 98.64%.","PeriodicalId":246471,"journal":{"name":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A 130nm hybrid low dropout regulator based on switched mode control for digital load circuits\",\"authors\":\"Saad Bin Nasir, Shreyas Sen, A. Raychowdhury\",\"doi\":\"10.1109/ESSCIRC.2016.7598306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hybrid (digital and analog) low dropout regulator (LDO) utilizing switched mode control is designed in 130 nm CMOS for fine grain power management, fast droop recovery and robust small signal regulation of multi-VCC digital loads. The design provides an optimal trade-off of performance and accuracy by switching between a digital and an analog control loop. The hybrid topology achieves robust small signal regulation and fast recovery from large signal transients or power state transitions. Measurements from a 130nm test-chip show Near-Threshold Voltage (NTV) operation, fast transient response of 18 ns for a load step of 10.3mA and a peak current efficiency of 98.64%.\",\"PeriodicalId\":246471,\"journal\":{\"name\":\"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2016.7598306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2016.7598306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 130nm hybrid low dropout regulator based on switched mode control for digital load circuits
A hybrid (digital and analog) low dropout regulator (LDO) utilizing switched mode control is designed in 130 nm CMOS for fine grain power management, fast droop recovery and robust small signal regulation of multi-VCC digital loads. The design provides an optimal trade-off of performance and accuracy by switching between a digital and an analog control loop. The hybrid topology achieves robust small signal regulation and fast recovery from large signal transients or power state transitions. Measurements from a 130nm test-chip show Near-Threshold Voltage (NTV) operation, fast transient response of 18 ns for a load step of 10.3mA and a peak current efficiency of 98.64%.