采用超薄栅电介质的高性能PD SOI CMOS的可靠性挑战

E. Zhao, A. Salman, J. Zhang, N. Subba, J. Chan, A. Marathe, S. Beebe, K. Taylor
{"title":"采用超薄栅电介质的高性能PD SOI CMOS的可靠性挑战","authors":"E. Zhao, A. Salman, J. Zhang, N. Subba, J. Chan, A. Marathe, S. Beebe, K. Taylor","doi":"10.1109/ISDRS.2003.1272134","DOIUrl":null,"url":null,"abstract":"In this paper we have discussed various reliability issues in developing cutting edge SOI technologies with ultra-thin gate dielectrics such as DC-HCI (hot carrier injection), TDDB, NBTI, and ESD. Floating body and body tied structures on partially depleted SOI substrate are investigated. The correlation between the AC and DC HCI degradation are compared and found to have a larger voltage scaling factor that can be explained by self-heating. The reliability of the gate dielectric is evaluated by time dependent dielectric breakdown (TDDB). The results imply that the addition of a T-gate shortens gate dielectric lifetime, this is because part of the gate dielectric is biased in accumulation and thus has shorter lifetime. Negative bias temperature instability (NBTI) lifetime improves with higher nitrogen concentration in the GOX but it is found that it can cause more positive charge generation during NBTI stress. Electrostatic discharge (ESD) is the major reliability issue, ESD failure mechanism is thermal runaway that is due to the increased self-heating. A typical protection of the increased self-heating is the lateral diode. Change in design of the lateral diode to floating gate electrode enhanced the charged device model (CDM) protection capability.","PeriodicalId":369241,"journal":{"name":"International Semiconductor Device Research Symposium, 2003","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Reliability challenges of high performance PD SOI CMOS with ultra-thin gate dielectrics\",\"authors\":\"E. Zhao, A. Salman, J. Zhang, N. Subba, J. Chan, A. Marathe, S. Beebe, K. Taylor\",\"doi\":\"10.1109/ISDRS.2003.1272134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have discussed various reliability issues in developing cutting edge SOI technologies with ultra-thin gate dielectrics such as DC-HCI (hot carrier injection), TDDB, NBTI, and ESD. Floating body and body tied structures on partially depleted SOI substrate are investigated. The correlation between the AC and DC HCI degradation are compared and found to have a larger voltage scaling factor that can be explained by self-heating. The reliability of the gate dielectric is evaluated by time dependent dielectric breakdown (TDDB). The results imply that the addition of a T-gate shortens gate dielectric lifetime, this is because part of the gate dielectric is biased in accumulation and thus has shorter lifetime. Negative bias temperature instability (NBTI) lifetime improves with higher nitrogen concentration in the GOX but it is found that it can cause more positive charge generation during NBTI stress. Electrostatic discharge (ESD) is the major reliability issue, ESD failure mechanism is thermal runaway that is due to the increased self-heating. A typical protection of the increased self-heating is the lateral diode. Change in design of the lateral diode to floating gate electrode enhanced the charged device model (CDM) protection capability.\",\"PeriodicalId\":369241,\"journal\":{\"name\":\"International Semiconductor Device Research Symposium, 2003\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Semiconductor Device Research Symposium, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDRS.2003.1272134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Semiconductor Device Research Symposium, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDRS.2003.1272134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在本文中,我们讨论了使用超薄栅极电介质(如DC-HCI(热载流子注入)、TDDB、NBTI和ESD)开发尖端SOI技术的各种可靠性问题。研究了部分耗尽SOI衬底上的浮体和绑体结构。比较了交流和直流HCI退化之间的相关性,发现具有更大的电压比例因子,可以用自加热来解释。采用时间相关介质击穿法(TDDB)对栅极介质的可靠性进行了评价。结果表明,t栅极的加入缩短了栅极介电寿命,这是因为部分栅极介电在积累中有偏置,因此具有较短的寿命。GOX中氮浓度越高,负偏置温度不稳定性(NBTI)寿命越长,但NBTI胁迫过程中产生的正电荷越多。静电放电(ESD)是主要的可靠性问题,静电放电的失效机制是由于自热增加引起的热失控。增加自热的典型保护是侧向二极管。将侧极改为浮栅电极,提高了充电器件模型(CDM)的保护能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability challenges of high performance PD SOI CMOS with ultra-thin gate dielectrics
In this paper we have discussed various reliability issues in developing cutting edge SOI technologies with ultra-thin gate dielectrics such as DC-HCI (hot carrier injection), TDDB, NBTI, and ESD. Floating body and body tied structures on partially depleted SOI substrate are investigated. The correlation between the AC and DC HCI degradation are compared and found to have a larger voltage scaling factor that can be explained by self-heating. The reliability of the gate dielectric is evaluated by time dependent dielectric breakdown (TDDB). The results imply that the addition of a T-gate shortens gate dielectric lifetime, this is because part of the gate dielectric is biased in accumulation and thus has shorter lifetime. Negative bias temperature instability (NBTI) lifetime improves with higher nitrogen concentration in the GOX but it is found that it can cause more positive charge generation during NBTI stress. Electrostatic discharge (ESD) is the major reliability issue, ESD failure mechanism is thermal runaway that is due to the increased self-heating. A typical protection of the increased self-heating is the lateral diode. Change in design of the lateral diode to floating gate electrode enhanced the charged device model (CDM) protection capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing pattern fill for planarity and parasitic capacitance Tunable CW-THz system with a log-periodic photoconductive emitter Improved crystallization temperature and interfacial properties of HfO/sub 2/ gate dielectrics by adding Ta/sub 2/O/sub 5/ with TaN metal gate Single-electron turnstile using Si-wire charge-coupled devices A new edge termination technique for SiC power devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1