基于地图切片和安全路径计算的无人机导航

Halil Utku Unlu, Dimitris Chaikalis, Athanasios Tsoukalas, A. Tzes
{"title":"基于地图切片和安全路径计算的无人机导航","authors":"Halil Utku Unlu, Dimitris Chaikalis, Athanasios Tsoukalas, A. Tzes","doi":"10.1109/ICARA56516.2023.10125893","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the safe path planning of a drone while exploring an unknown space. The drone is localized by fusing measurements from sensors including an IMU, RGB-D sensor, and an optical flow system, while executing an RTAB-Map SLAM algorithm. The 3D-occupancy Octomap is generated online and a slicing algorithm is employed to compute 2D-maps. The maps' traversible coordinates are identified and used as potential points for the drone intermediate navigation to the destination. The final segment corresponds to a shortest Chebyshev-length path between all frontier pixels and the endpoint over the unexplored map region. The drone's path is computed using a skeletal path between the identified map boundaries so that the drone moves from its current location through the free map coordinates to the destination point. Simulation studies using within the interior of an apartment indicate the efficiency and effectiveness of the proposed method.","PeriodicalId":443572,"journal":{"name":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV- Navigation Using Map Slicing and Safe Path Computation\",\"authors\":\"Halil Utku Unlu, Dimitris Chaikalis, Athanasios Tsoukalas, A. Tzes\",\"doi\":\"10.1109/ICARA56516.2023.10125893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the safe path planning of a drone while exploring an unknown space. The drone is localized by fusing measurements from sensors including an IMU, RGB-D sensor, and an optical flow system, while executing an RTAB-Map SLAM algorithm. The 3D-occupancy Octomap is generated online and a slicing algorithm is employed to compute 2D-maps. The maps' traversible coordinates are identified and used as potential points for the drone intermediate navigation to the destination. The final segment corresponds to a shortest Chebyshev-length path between all frontier pixels and the endpoint over the unexplored map region. The drone's path is computed using a skeletal path between the identified map boundaries so that the drone moves from its current location through the free map coordinates to the destination point. Simulation studies using within the interior of an apartment indicate the efficiency and effectiveness of the proposed method.\",\"PeriodicalId\":443572,\"journal\":{\"name\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA56516.2023.10125893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA56516.2023.10125893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了无人机在探索未知空间时的安全路径规划问题。无人机通过融合来自包括IMU、RGB-D传感器和光流系统在内的传感器的测量来定位,同时执行rtaba - map SLAM算法。在线生成三维占用八层地图,并采用切片算法计算二维地图。地图的可穿越坐标被识别并用作无人机到目的地的中间导航的潜在点。最后一段对应于所有边界像素和未探测地图区域上的端点之间最短的切比雪夫长度路径。无人机的路径是使用识别地图边界之间的骨架路径计算的,这样无人机就可以通过自由地图坐标从当前位置移动到目的地。在公寓内部进行的仿真研究表明了该方法的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UAV- Navigation Using Map Slicing and Safe Path Computation
This paper is concerned with the safe path planning of a drone while exploring an unknown space. The drone is localized by fusing measurements from sensors including an IMU, RGB-D sensor, and an optical flow system, while executing an RTAB-Map SLAM algorithm. The 3D-occupancy Octomap is generated online and a slicing algorithm is employed to compute 2D-maps. The maps' traversible coordinates are identified and used as potential points for the drone intermediate navigation to the destination. The final segment corresponds to a shortest Chebyshev-length path between all frontier pixels and the endpoint over the unexplored map region. The drone's path is computed using a skeletal path between the identified map boundaries so that the drone moves from its current location through the free map coordinates to the destination point. Simulation studies using within the interior of an apartment indicate the efficiency and effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fused Swish-ReLU Efficient-Net Model for Deepfakes Detection SensorClouds: A Framework for Real-Time Processing of Multi-modal Sensor Data for Human-Robot-Collaboration Modified Bug Algorithm with Proximity Sensors to Reduce Human-Cobot Collisions Toward Computationally Efficient Path Generation and Push Planning for Robotic Nonprehensile Manipulation Correlation Analysis of Factors Influencing the Motion Planning Accuracy of Articulated Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1