基于自适应背景模型的目标检测算法比较

Daniela Hall, J. Nascimento, P. Ribeiro, E. Andrade, Plinio Moreno, S. Pesnel, T. List, R. Emonet, R. Fisher, J. S. Victor, J. Crowley
{"title":"基于自适应背景模型的目标检测算法比较","authors":"Daniela Hall, J. Nascimento, P. Ribeiro, E. Andrade, Plinio Moreno, S. Pesnel, T. List, R. Emonet, R. Fisher, J. S. Victor, J. Crowley","doi":"10.1109/VSPETS.2005.1570905","DOIUrl":null,"url":null,"abstract":"This article compares the performance of target detectors based on adaptive background differencing on public benchmark data. Five state of the art methods are described. The performance is evaluated using state of the art measures with respect to ground truth. The original points are the comparison to hand labelled ground truth and the evaluation on a large database. The simpler methods LOTS and SGM are more appropriate to the particular task as MGM using a more complex background model.","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"124","resultStr":"{\"title\":\"Comparison of target detection algorithms using adaptive background models\",\"authors\":\"Daniela Hall, J. Nascimento, P. Ribeiro, E. Andrade, Plinio Moreno, S. Pesnel, T. List, R. Emonet, R. Fisher, J. S. Victor, J. Crowley\",\"doi\":\"10.1109/VSPETS.2005.1570905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article compares the performance of target detectors based on adaptive background differencing on public benchmark data. Five state of the art methods are described. The performance is evaluated using state of the art measures with respect to ground truth. The original points are the comparison to hand labelled ground truth and the evaluation on a large database. The simpler methods LOTS and SGM are more appropriate to the particular task as MGM using a more complex background model.\",\"PeriodicalId\":435841,\"journal\":{\"name\":\"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"124\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSPETS.2005.1570905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 124

摘要

本文在公共基准数据上比较了基于自适应背景差分的目标检测器的性能。描述了五种最先进的方法。性能是用最先进的测量方法来评估的。原始点是与手工标记的地面真值的比较和对大型数据库的评估。简单的方法LOTS和SGM更适合于MGM使用更复杂的背景模型的特定任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of target detection algorithms using adaptive background models
This article compares the performance of target detectors based on adaptive background differencing on public benchmark data. Five state of the art methods are described. The performance is evaluated using state of the art measures with respect to ground truth. The original points are the comparison to hand labelled ground truth and the evaluation on a large database. The simpler methods LOTS and SGM are more appropriate to the particular task as MGM using a more complex background model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On calibrating a camera network using parabolic trajectories of a bouncing ball Vehicle Class Recognition from Video-Based on 3D Curve Probes A Comparison of Active-Contour Models Based on Blurring and on Marginalization Validation of blind region learning and tracking Object tracking with dynamic feature graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1