基于主动学习的音频篡改检测

Vivek Rahinj, Rashmika K. Patole, S. Metkar
{"title":"基于主动学习的音频篡改检测","authors":"Vivek Rahinj, Rashmika K. Patole, S. Metkar","doi":"10.1109/CSI54720.2022.9923997","DOIUrl":null,"url":null,"abstract":"Audio authentication is the primary task in an audio forensics scenario in which audio tampering detection is one of the objectives. In this paper, we offer a fresh approach to audio tampering detection using supervised learning and active learning methods. The present techniques are based on supervised learning, and they require a massive amount of labeled data for classification. There is very little availability of standard data. The paper provides a comparative study of supervised and active learning approaches. The work uses unlabeled dataset for classification which is the primary focus in any active learning method. The proposed work uses less than 1-sec audio files for copy and move tampering. Result gives 92.78% accuracy for supervised learning using stft whereas for active learning it gives 87.38%. Active learning reduces the cost of annotation as we do not have to label all the data.","PeriodicalId":221137,"journal":{"name":"2022 International Conference on Connected Systems & Intelligence (CSI)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Learning Based Audio Tampering Detection\",\"authors\":\"Vivek Rahinj, Rashmika K. Patole, S. Metkar\",\"doi\":\"10.1109/CSI54720.2022.9923997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio authentication is the primary task in an audio forensics scenario in which audio tampering detection is one of the objectives. In this paper, we offer a fresh approach to audio tampering detection using supervised learning and active learning methods. The present techniques are based on supervised learning, and they require a massive amount of labeled data for classification. There is very little availability of standard data. The paper provides a comparative study of supervised and active learning approaches. The work uses unlabeled dataset for classification which is the primary focus in any active learning method. The proposed work uses less than 1-sec audio files for copy and move tampering. Result gives 92.78% accuracy for supervised learning using stft whereas for active learning it gives 87.38%. Active learning reduces the cost of annotation as we do not have to label all the data.\",\"PeriodicalId\":221137,\"journal\":{\"name\":\"2022 International Conference on Connected Systems & Intelligence (CSI)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Connected Systems & Intelligence (CSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSI54720.2022.9923997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Connected Systems & Intelligence (CSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSI54720.2022.9923997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

音频认证是音频取证场景中的主要任务,其中音频篡改检测是目标之一。在本文中,我们提出了一种使用监督学习和主动学习方法进行音频篡改检测的新方法。目前的技术是基于监督学习的,它们需要大量的标记数据进行分类。标准数据的可用性非常少。本文对监督学习方法和主动学习方法进行了比较研究。这项工作使用未标记的数据集进行分类,这是任何主动学习方法的主要焦点。建议的工作使用不到1秒的音频文件进行复制和移动篡改。使用stft进行监督学习的准确率为92.78%,而使用主动学习的准确率为87.38%。主动学习减少了标注的成本,因为我们不需要标注所有的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active Learning Based Audio Tampering Detection
Audio authentication is the primary task in an audio forensics scenario in which audio tampering detection is one of the objectives. In this paper, we offer a fresh approach to audio tampering detection using supervised learning and active learning methods. The present techniques are based on supervised learning, and they require a massive amount of labeled data for classification. There is very little availability of standard data. The paper provides a comparative study of supervised and active learning approaches. The work uses unlabeled dataset for classification which is the primary focus in any active learning method. The proposed work uses less than 1-sec audio files for copy and move tampering. Result gives 92.78% accuracy for supervised learning using stft whereas for active learning it gives 87.38%. Active learning reduces the cost of annotation as we do not have to label all the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Object Detection in Microscopic Image of Indian Herbal Plants using YOLOv5 on Jetson Nano Estimation and Interception of a Spiralling Target on Reentry in the Presence of non-Gaussian Measurement Noise COVID-19 Relief Measures assimilating Open Source Intelligence Fake News Article classification using Random Forest, Passive Aggressive, and Gradient Boosting Improved Bi-Channel CNN For Covid-19 Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1