采用100像素CMOS成像仪和3.25-3.50太赫兹量子级联激光频率梳的混合太赫兹成像系统

Todd Joseph Smith, A. Broome, Daniel Stanley, J. Westberg, G. Wysocki, K. Sengupta
{"title":"采用100像素CMOS成像仪和3.25-3.50太赫兹量子级联激光频率梳的混合太赫兹成像系统","authors":"Todd Joseph Smith, A. Broome, Daniel Stanley, J. Westberg, G. Wysocki, K. Sengupta","doi":"10.1109/ESSCIRC.2019.8902823","DOIUrl":null,"url":null,"abstract":"The terahertz frequency range beyond 3 THz has exciting potential to have a transformative impact in a wide range of applications, including chemical and biomedical sensing, spectroscopy, imaging, and short-distance wireless communication. While there have been significant advancements in silicon-based THz imagers in the frequency ranges below 1 THz, technological development beyond 3 THz has been impeded by the lack of solid-state sources in this frequency range. In addition, the design space beyond 3 THz opens up fundamentally new challenges across electronics and the electromagnetic interface. In this spectral range, the wavelength is small enough (λox ≈ 50 μm at 3 THz) that a vertical via from the top antenna layer to the detector is a distributed element (transmission line or radiator). In this letter, we follow a careful circuits-electromagnetics co-design approach toward a hybrid imaging system with a 100-pixel CMOS imager that interfaces with a THz quantum cascade laser frequency comb that spans 3.25–3.5 THz with mode spacing of 17 GHz. The array chip, while designed for an optimal operation across 2.7–2.9 THz, demonstrates an average noise equivalent power (NEP) (across pixels) of $1260\\,{\\text{pW}}/\\sqrt {{\\text{Hz}}} $ between 3.25–3.5 THz and a projected NEP of $284\\,{\\text{pW}}/\\sqrt {{\\text{Hz}}} $ across the design range of 2.7–2.9 THz. To the best of our knowledge, we demonstrate for the first time full THz imaging in a hybrid quantum cascade laser (QCL)–CMOS fashion. This approach allows future works to leverage both QCL and CMOS technologies to demonstrate new technological advances for systems in the 1–10 THz range.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Hybrid THz Imaging System With a 100-Pixel CMOS Imager and a 3.25–3.50 THz Quantum Cascade Laser Frequency Comb\",\"authors\":\"Todd Joseph Smith, A. Broome, Daniel Stanley, J. Westberg, G. Wysocki, K. Sengupta\",\"doi\":\"10.1109/ESSCIRC.2019.8902823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The terahertz frequency range beyond 3 THz has exciting potential to have a transformative impact in a wide range of applications, including chemical and biomedical sensing, spectroscopy, imaging, and short-distance wireless communication. While there have been significant advancements in silicon-based THz imagers in the frequency ranges below 1 THz, technological development beyond 3 THz has been impeded by the lack of solid-state sources in this frequency range. In addition, the design space beyond 3 THz opens up fundamentally new challenges across electronics and the electromagnetic interface. In this spectral range, the wavelength is small enough (λox ≈ 50 μm at 3 THz) that a vertical via from the top antenna layer to the detector is a distributed element (transmission line or radiator). In this letter, we follow a careful circuits-electromagnetics co-design approach toward a hybrid imaging system with a 100-pixel CMOS imager that interfaces with a THz quantum cascade laser frequency comb that spans 3.25–3.5 THz with mode spacing of 17 GHz. The array chip, while designed for an optimal operation across 2.7–2.9 THz, demonstrates an average noise equivalent power (NEP) (across pixels) of $1260\\\\,{\\\\text{pW}}/\\\\sqrt {{\\\\text{Hz}}} $ between 3.25–3.5 THz and a projected NEP of $284\\\\,{\\\\text{pW}}/\\\\sqrt {{\\\\text{Hz}}} $ across the design range of 2.7–2.9 THz. To the best of our knowledge, we demonstrate for the first time full THz imaging in a hybrid quantum cascade laser (QCL)–CMOS fashion. This approach allows future works to leverage both QCL and CMOS technologies to demonstrate new technological advances for systems in the 1–10 THz range.\",\"PeriodicalId\":402948,\"journal\":{\"name\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2019.8902823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

超过3thz的太赫兹频率范围具有令人兴奋的潜力,可以在广泛的应用中产生变革性影响,包括化学和生物医学传感、光谱学、成像和短距离无线通信。虽然硅基太赫兹成像仪在低于1太赫兹的频率范围内取得了重大进展,但超过3太赫兹的技术发展一直受到该频率范围内缺乏固态源的阻碍。此外,超过3thz的设计空间为电子和电磁接口带来了全新的挑战。在这个光谱范围内,波长足够小(λox≈50 μm在3thz),从顶部天线层到探测器的垂直通道是一个分布式元件(传输线或辐射器)。在这封信中,我们遵循一个精心的电路-电磁学协同设计方法,实现了一个混合成像系统,该系统带有一个100像素CMOS成像仪,该成像仪与一个太赫兹量子级联激光频率梳接口,该频率梳跨越3.25-3.5太赫兹,模式间隔为17 GHz。该阵列芯片设计用于2.7-2.9太赫兹范围内的最佳操作,其平均噪声等效功率(NEP)(跨像素)在3.25-3.5太赫兹之间为1260美元,{\text{pW}}/\sqrt {{\text{Hz}}} $,在2.7-2.9太赫兹的设计范围内,预计NEP为284美元,{\text{pW}}/\sqrt {{\text{Hz}}} $。据我们所知,我们首次以混合量子级联激光器(QCL) -CMOS方式演示了全太赫兹成像。这种方法允许未来的工作利用QCL和CMOS技术来展示1-10太赫兹范围内系统的新技术进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid THz Imaging System With a 100-Pixel CMOS Imager and a 3.25–3.50 THz Quantum Cascade Laser Frequency Comb
The terahertz frequency range beyond 3 THz has exciting potential to have a transformative impact in a wide range of applications, including chemical and biomedical sensing, spectroscopy, imaging, and short-distance wireless communication. While there have been significant advancements in silicon-based THz imagers in the frequency ranges below 1 THz, technological development beyond 3 THz has been impeded by the lack of solid-state sources in this frequency range. In addition, the design space beyond 3 THz opens up fundamentally new challenges across electronics and the electromagnetic interface. In this spectral range, the wavelength is small enough (λox ≈ 50 μm at 3 THz) that a vertical via from the top antenna layer to the detector is a distributed element (transmission line or radiator). In this letter, we follow a careful circuits-electromagnetics co-design approach toward a hybrid imaging system with a 100-pixel CMOS imager that interfaces with a THz quantum cascade laser frequency comb that spans 3.25–3.5 THz with mode spacing of 17 GHz. The array chip, while designed for an optimal operation across 2.7–2.9 THz, demonstrates an average noise equivalent power (NEP) (across pixels) of $1260\,{\text{pW}}/\sqrt {{\text{Hz}}} $ between 3.25–3.5 THz and a projected NEP of $284\,{\text{pW}}/\sqrt {{\text{Hz}}} $ across the design range of 2.7–2.9 THz. To the best of our knowledge, we demonstrate for the first time full THz imaging in a hybrid quantum cascade laser (QCL)–CMOS fashion. This approach allows future works to leverage both QCL and CMOS technologies to demonstrate new technological advances for systems in the 1–10 THz range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 78 fs RMS Jitter Injection-Locked Clock Multiplier Using Transformer-Based Ultra-Low-Power VCO An Integrated Programmable High-Voltage Bipolar Pulser With Embedded Transmit/Receive Switch for Miniature Ultrasound Probes Machine Learning Based Prior-Knowledge-Free Calibration for Split Pipelined-SAR ADCs with Open-Loop Amplifiers Achieving 93.7-dB SFDR An 18 dBm 155-180 GHz SiGe Power Amplifier Using a 4-Way T-Junction Combining Network A Bidirectional Brain Computer Interface with 64-Channel Recording, Resonant Stimulation and Artifact Suppression in Standard 65nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1