层选择逼近对cnn可靠性和性能的影响

R. L. R. Junior, P. Rech
{"title":"层选择逼近对cnn可靠性和性能的影响","authors":"R. L. R. Junior, P. Rech","doi":"10.1109/DFT50435.2020.9250821","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate the impact on reliability and performance of the selective approximation of Convolutional Neural Networks (CNNs) layers on NVIDIA mixed-precision architectures. We found that, even without affecting accuracy, the approximation from single to half precision of each layer has a different impact on both performance and output error.","PeriodicalId":340119,"journal":{"name":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Layers Selective Approximation on CNNs Reliability and Performance\",\"authors\":\"R. L. R. Junior, P. Rech\",\"doi\":\"10.1109/DFT50435.2020.9250821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we evaluate the impact on reliability and performance of the selective approximation of Convolutional Neural Networks (CNNs) layers on NVIDIA mixed-precision architectures. We found that, even without affecting accuracy, the approximation from single to half precision of each layer has a different impact on both performance and output error.\",\"PeriodicalId\":340119,\"journal\":{\"name\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT50435.2020.9250821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT50435.2020.9250821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们评估了在NVIDIA混合精度架构上卷积神经网络(cnn)层的选择性逼近对可靠性和性能的影响。我们发现,即使不影响精度,每层从单精度到半精度的近似对性能和输出误差都有不同的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Layers Selective Approximation on CNNs Reliability and Performance
In this paper, we evaluate the impact on reliability and performance of the selective approximation of Convolutional Neural Networks (CNNs) layers on NVIDIA mixed-precision architectures. We found that, even without affecting accuracy, the approximation from single to half precision of each layer has a different impact on both performance and output error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Variation-Aware Test for Logic Interconnects using Neural Networks – A Case Study A Pipelined Multi-Level Fault Injector for Deep Neural Networks Reliable Classification with Ensemble Convolutional Neural Networks Hardware Accelerator Design with Supervised Machine Learning for Solar Particle Event Prediction Latest Trends in Hardware Security and Privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1