3D-IC互连测试,诊断和维修

Chun-Chuan Chi, Cheng-Wen Wu, Min-Jer Wang, Hung-Chih Lin
{"title":"3D-IC互连测试,诊断和维修","authors":"Chun-Chuan Chi, Cheng-Wen Wu, Min-Jer Wang, Hung-Chih Lin","doi":"10.1109/VTS.2013.6548905","DOIUrl":null,"url":null,"abstract":"Through-Silicon-Via (TSV)-based three-dimensional ICs (3D-ICs) have gained increasing attention due to their potential in reducing manufacturing costs and capability of integrating more functionality into a single chip. One of the most important factors that affect 3D-IC yield is the integrity of interconnects which connect different dies in a 3D-IC. This paper proposes a Design-for-Test (DIT) scheme that can 1) detect faulty interconnects in 3D-ICs, 2) pinpoint open defect locations to help yield learning, and 3) repair faulty interconnects caused by open defects to improve the 3D-IC yield. Experimental results show that the proposed scheme can achieve a diagnosis resolution of 84% for open defects. With the interconnect repair mechanism, the 3D-IC yield is improved by 10%. In addition, cost-benefit analysis reveals that the proposed technique can significantly increase the net profit, especially when the natural interconnect yield is low.","PeriodicalId":138435,"journal":{"name":"2013 IEEE 31st VLSI Test Symposium (VTS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"3D-IC interconnect test, diagnosis, and repair\",\"authors\":\"Chun-Chuan Chi, Cheng-Wen Wu, Min-Jer Wang, Hung-Chih Lin\",\"doi\":\"10.1109/VTS.2013.6548905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through-Silicon-Via (TSV)-based three-dimensional ICs (3D-ICs) have gained increasing attention due to their potential in reducing manufacturing costs and capability of integrating more functionality into a single chip. One of the most important factors that affect 3D-IC yield is the integrity of interconnects which connect different dies in a 3D-IC. This paper proposes a Design-for-Test (DIT) scheme that can 1) detect faulty interconnects in 3D-ICs, 2) pinpoint open defect locations to help yield learning, and 3) repair faulty interconnects caused by open defects to improve the 3D-IC yield. Experimental results show that the proposed scheme can achieve a diagnosis resolution of 84% for open defects. With the interconnect repair mechanism, the 3D-IC yield is improved by 10%. In addition, cost-benefit analysis reveals that the proposed technique can significantly increase the net profit, especially when the natural interconnect yield is low.\",\"PeriodicalId\":138435,\"journal\":{\"name\":\"2013 IEEE 31st VLSI Test Symposium (VTS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 31st VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2013.6548905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2013.6548905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

基于通硅孔(TSV)的三维集成电路(3d - ic)由于其在降低制造成本和将更多功能集成到单个芯片上的潜力而受到越来越多的关注。影响3D-IC成品率的最重要因素之一是连接3D-IC中不同芯片的互连的完整性。本文提出了一种设计测试(Design-for-Test, DIT)方案,该方案可以1)检测3D-IC中的故障互连,2)精确定位开放缺陷位置以帮助良率学习,3)修复由开放缺陷引起的故障互连以提高3D-IC良率。实验结果表明,该方法对开放性缺陷的诊断准确率可达84%。采用互连修复机制,3D-IC的成品率提高了10%。此外,成本效益分析表明,该技术可以显著提高净利润,特别是在自然互连成品率较低的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D-IC interconnect test, diagnosis, and repair
Through-Silicon-Via (TSV)-based three-dimensional ICs (3D-ICs) have gained increasing attention due to their potential in reducing manufacturing costs and capability of integrating more functionality into a single chip. One of the most important factors that affect 3D-IC yield is the integrity of interconnects which connect different dies in a 3D-IC. This paper proposes a Design-for-Test (DIT) scheme that can 1) detect faulty interconnects in 3D-ICs, 2) pinpoint open defect locations to help yield learning, and 3) repair faulty interconnects caused by open defects to improve the 3D-IC yield. Experimental results show that the proposed scheme can achieve a diagnosis resolution of 84% for open defects. With the interconnect repair mechanism, the 3D-IC yield is improved by 10%. In addition, cost-benefit analysis reveals that the proposed technique can significantly increase the net profit, especially when the natural interconnect yield is low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Path selection based on static timing analysis considering input necessary assignments Hot topic session 4A: Reliability analysis of complex digital systems SOC test compression scheme using sequential linear decompressors with retained free variables Contactless test access mechanism for TSV based 3D ICs Experiments and analysis to characterize logic state retention limitations in 28nm process node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1