E. Dentoni Litta, P. Hellstrom, C. Henkel, M. Ostling
{"title":"规模化ALD高k/金属栅堆的原位SiOx界面层形成","authors":"E. Dentoni Litta, P. Hellstrom, C. Henkel, M. Ostling","doi":"10.1109/ULIS.2012.6193368","DOIUrl":null,"url":null,"abstract":"This work addresses the issue of interfacial layer formation in scaled high-k/metal gate stacks: the possibility of growing a thin SiOx interfacial layer in situ in a commercial ALD reactor has been evaluated, employing ozone-based Si oxidation. Three techniques (O3, O3/H2O and Pulsed) have been developed to grow scaled sub-nm interfacial layers and have been integrated in MOS capacitors and MOSFETs. A comparison based on electrical characterization shows that the performance of the proposed in situ methods is comparable or superior to that of existing ex situ techniques; specifically, the O3 method can grow aggressively scaled interfacial layers (4-5 Å) while preserving the electrical quality of the stack.","PeriodicalId":350544,"journal":{"name":"2012 13th International Conference on Ultimate Integration on Silicon (ULIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"In situ SiOx interfacial layer formation for scaled ALD high-k/metal gate stacks\",\"authors\":\"E. Dentoni Litta, P. Hellstrom, C. Henkel, M. Ostling\",\"doi\":\"10.1109/ULIS.2012.6193368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses the issue of interfacial layer formation in scaled high-k/metal gate stacks: the possibility of growing a thin SiOx interfacial layer in situ in a commercial ALD reactor has been evaluated, employing ozone-based Si oxidation. Three techniques (O3, O3/H2O and Pulsed) have been developed to grow scaled sub-nm interfacial layers and have been integrated in MOS capacitors and MOSFETs. A comparison based on electrical characterization shows that the performance of the proposed in situ methods is comparable or superior to that of existing ex situ techniques; specifically, the O3 method can grow aggressively scaled interfacial layers (4-5 Å) while preserving the electrical quality of the stack.\",\"PeriodicalId\":350544,\"journal\":{\"name\":\"2012 13th International Conference on Ultimate Integration on Silicon (ULIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 13th International Conference on Ultimate Integration on Silicon (ULIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULIS.2012.6193368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Conference on Ultimate Integration on Silicon (ULIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULIS.2012.6193368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In situ SiOx interfacial layer formation for scaled ALD high-k/metal gate stacks
This work addresses the issue of interfacial layer formation in scaled high-k/metal gate stacks: the possibility of growing a thin SiOx interfacial layer in situ in a commercial ALD reactor has been evaluated, employing ozone-based Si oxidation. Three techniques (O3, O3/H2O and Pulsed) have been developed to grow scaled sub-nm interfacial layers and have been integrated in MOS capacitors and MOSFETs. A comparison based on electrical characterization shows that the performance of the proposed in situ methods is comparable or superior to that of existing ex situ techniques; specifically, the O3 method can grow aggressively scaled interfacial layers (4-5 Å) while preserving the electrical quality of the stack.