时间同步分布式网络中ROS2机器人实时控制性能评价

Lennart Puck, Philipp Keller, Tristan Schnell, C. Plasberg, Atanas Tanev, G. Heppner, A. Rönnau, R. Dillmann
{"title":"时间同步分布式网络中ROS2机器人实时控制性能评价","authors":"Lennart Puck, Philipp Keller, Tristan Schnell, C. Plasberg, Atanas Tanev, G. Heppner, A. Rönnau, R. Dillmann","doi":"10.1109/CASE49439.2021.9551447","DOIUrl":null,"url":null,"abstract":"Modern robots are mainly controlled by monolithic black-box controllers provided by the individual manufacturers. In research institutions the first version of the Robot Operating System (ROS1) is widely used for different applications. However, ROS1 lacks real-time capable communication. The ongoing development of ROS2 promises to break this paradigm. By employing Data Distribution Service (DDS) as a middleware the modular architecture aims at providing realtime capabilities. This study assesses the current prospects and limitations of ROS2. It gains novel insights towards improved and, in particular, reliable results regarding latencies and jitter. To this end, the allocation and transmission of ROS2 messages is evaluated in an example application for robotic control. An oscilloscope is applied for external validation of the measurements in such a time-synchronized distributed network. The complete application is set up from non-real-time object detection towards real-time control via ROS2 and EtherCAT. An in-depth evaluation of the ROS2 communication stack on a single host and in distributed setups is included. With real-time safe memory allocation and highly privileged ROS2 processes real-time capabilities are ensured.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Performance Evaluation of Real-Time ROS2 Robotic Control in a Time-Synchronized Distributed Network\",\"authors\":\"Lennart Puck, Philipp Keller, Tristan Schnell, C. Plasberg, Atanas Tanev, G. Heppner, A. Rönnau, R. Dillmann\",\"doi\":\"10.1109/CASE49439.2021.9551447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern robots are mainly controlled by monolithic black-box controllers provided by the individual manufacturers. In research institutions the first version of the Robot Operating System (ROS1) is widely used for different applications. However, ROS1 lacks real-time capable communication. The ongoing development of ROS2 promises to break this paradigm. By employing Data Distribution Service (DDS) as a middleware the modular architecture aims at providing realtime capabilities. This study assesses the current prospects and limitations of ROS2. It gains novel insights towards improved and, in particular, reliable results regarding latencies and jitter. To this end, the allocation and transmission of ROS2 messages is evaluated in an example application for robotic control. An oscilloscope is applied for external validation of the measurements in such a time-synchronized distributed network. The complete application is set up from non-real-time object detection towards real-time control via ROS2 and EtherCAT. An in-depth evaluation of the ROS2 communication stack on a single host and in distributed setups is included. With real-time safe memory allocation and highly privileged ROS2 processes real-time capabilities are ensured.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

现代机器人主要由单个制造商提供的单片黑盒控制器控制。在研究机构中,机器人操作系统(ROS1)的第一版被广泛用于不同的应用。然而,ROS1缺乏实时通信能力。ROS2正在进行的开发有望打破这种范式。通过采用数据分发服务(DDS)作为中间件,模块化体系结构旨在提供实时功能。本研究评估了ROS2的发展前景和局限性。它获得了对改进的新颖见解,特别是关于延迟和抖动的可靠结果。为此,在机器人控制实例应用中对ROS2消息的分配和传输进行了评估。在这种时间同步分布式网络中,使用示波器对测量结果进行外部验证。完整的应用程序从非实时对象检测到通过ROS2和EtherCAT进行实时控制。本文还对单个主机上和分布式设置中的ROS2通信栈进行了深入的评估。通过实时安全内存分配和高度特权的ROS2进程,可以确保实时功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Evaluation of Real-Time ROS2 Robotic Control in a Time-Synchronized Distributed Network
Modern robots are mainly controlled by monolithic black-box controllers provided by the individual manufacturers. In research institutions the first version of the Robot Operating System (ROS1) is widely used for different applications. However, ROS1 lacks real-time capable communication. The ongoing development of ROS2 promises to break this paradigm. By employing Data Distribution Service (DDS) as a middleware the modular architecture aims at providing realtime capabilities. This study assesses the current prospects and limitations of ROS2. It gains novel insights towards improved and, in particular, reliable results regarding latencies and jitter. To this end, the allocation and transmission of ROS2 messages is evaluated in an example application for robotic control. An oscilloscope is applied for external validation of the measurements in such a time-synchronized distributed network. The complete application is set up from non-real-time object detection towards real-time control via ROS2 and EtherCAT. An in-depth evaluation of the ROS2 communication stack on a single host and in distributed setups is included. With real-time safe memory allocation and highly privileged ROS2 processes real-time capabilities are ensured.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1