C. Guérin, V. Huard, C. Parthasarathy, J. Roux, A. Bravaix, E. Vincent
{"title":"先进CMOS节点的新型热载流子AC-DC设计指南","authors":"C. Guérin, V. Huard, C. Parthasarathy, J. Roux, A. Bravaix, E. Vincent","doi":"10.1109/RELPHY.2008.4559016","DOIUrl":null,"url":null,"abstract":"The understanding of the relationship between circuit lifetime and device DC hot carrier (HC) stress lifetime is becoming increasingly important for advanced nodes since supply voltage (Vdd) and channel length (L) do not scale anymore in similar proportions. This paper proposes a novel approach to tackle HC risk assessment through a combination of refined transistor HC modeling, Wafer Level Reliability (WLR) & High Temperature Operating Lifetest (HTOL) experimental results and simulations.","PeriodicalId":187696,"journal":{"name":"2008 IEEE International Reliability Physics Symposium","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Novel hot-carrier AC-DC design guidelines for advanced CMOS nodes\",\"authors\":\"C. Guérin, V. Huard, C. Parthasarathy, J. Roux, A. Bravaix, E. Vincent\",\"doi\":\"10.1109/RELPHY.2008.4559016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The understanding of the relationship between circuit lifetime and device DC hot carrier (HC) stress lifetime is becoming increasingly important for advanced nodes since supply voltage (Vdd) and channel length (L) do not scale anymore in similar proportions. This paper proposes a novel approach to tackle HC risk assessment through a combination of refined transistor HC modeling, Wafer Level Reliability (WLR) & High Temperature Operating Lifetest (HTOL) experimental results and simulations.\",\"PeriodicalId\":187696,\"journal\":{\"name\":\"2008 IEEE International Reliability Physics Symposium\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Reliability Physics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.2008.4559016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2008.4559016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel hot-carrier AC-DC design guidelines for advanced CMOS nodes
The understanding of the relationship between circuit lifetime and device DC hot carrier (HC) stress lifetime is becoming increasingly important for advanced nodes since supply voltage (Vdd) and channel length (L) do not scale anymore in similar proportions. This paper proposes a novel approach to tackle HC risk assessment through a combination of refined transistor HC modeling, Wafer Level Reliability (WLR) & High Temperature Operating Lifetest (HTOL) experimental results and simulations.