有效的分层和分区电路仿真

P. Maurer
{"title":"有效的分层和分区电路仿真","authors":"P. Maurer","doi":"10.1109/ICVD.1999.745154","DOIUrl":null,"url":null,"abstract":"This paper presents new, highly-efficient techniques for simulating extremely large circuits, assuming that hierarchical design techniques have been used. Both hierarchical and partitioned circuits consist of a master circuit and several sub-circuits. Hierarchical circuits permit sub-circuits to be reused, while partitioned circuits permit only a single use of each sub-circuit. Both types of circuits permit multiple levels of hierarchy. In partitioned circuits, triggering is used to perform simulations that are several times faster than Levelized Compiled Code (LCC) simulation. For hierarchical simulation, the concept of boundary activity is introduced. Optimization with respect to boundary activity can produce simulations that are much faster than ordinary flat simulations. It is further shown that hierarchical design can permit the efficient simulation of circuits that cannot be simulated on a single workstation using ordinary flat simulation. Aggressive use of hierarchy is used to demonstrate the simulation of circuits containing as many as four billion (4,000,000,000) gates.","PeriodicalId":443373,"journal":{"name":"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient simulation for hierarchical and partitioned circuits\",\"authors\":\"P. Maurer\",\"doi\":\"10.1109/ICVD.1999.745154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents new, highly-efficient techniques for simulating extremely large circuits, assuming that hierarchical design techniques have been used. Both hierarchical and partitioned circuits consist of a master circuit and several sub-circuits. Hierarchical circuits permit sub-circuits to be reused, while partitioned circuits permit only a single use of each sub-circuit. Both types of circuits permit multiple levels of hierarchy. In partitioned circuits, triggering is used to perform simulations that are several times faster than Levelized Compiled Code (LCC) simulation. For hierarchical simulation, the concept of boundary activity is introduced. Optimization with respect to boundary activity can produce simulations that are much faster than ordinary flat simulations. It is further shown that hierarchical design can permit the efficient simulation of circuits that cannot be simulated on a single workstation using ordinary flat simulation. Aggressive use of hierarchy is used to demonstrate the simulation of circuits containing as many as four billion (4,000,000,000) gates.\",\"PeriodicalId\":443373,\"journal\":{\"name\":\"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVD.1999.745154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVD.1999.745154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了新的,高效的技术来模拟超大电路,假设分层设计技术已经使用。分层电路和分区电路都由一个主电路和若干子电路组成。分层电路允许子电路重复使用,而分区电路只允许每个子电路使用一次。这两种类型的电路都允许多级层次结构。在分割电路中,触发用于执行比Levelized Compiled Code (LCC)仿真快几倍的仿真。在分层模拟中,引入了边界活动的概念。关于边界活动的优化可以产生比普通平面模拟快得多的模拟。进一步表明,分层设计可以有效地模拟在单个工作站上使用普通平面模拟无法模拟的电路。积极使用层次结构用于演示包含多达40亿个(4,000,000,000)门的电路的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient simulation for hierarchical and partitioned circuits
This paper presents new, highly-efficient techniques for simulating extremely large circuits, assuming that hierarchical design techniques have been used. Both hierarchical and partitioned circuits consist of a master circuit and several sub-circuits. Hierarchical circuits permit sub-circuits to be reused, while partitioned circuits permit only a single use of each sub-circuit. Both types of circuits permit multiple levels of hierarchy. In partitioned circuits, triggering is used to perform simulations that are several times faster than Levelized Compiled Code (LCC) simulation. For hierarchical simulation, the concept of boundary activity is introduced. Optimization with respect to boundary activity can produce simulations that are much faster than ordinary flat simulations. It is further shown that hierarchical design can permit the efficient simulation of circuits that cannot be simulated on a single workstation using ordinary flat simulation. Aggressive use of hierarchy is used to demonstrate the simulation of circuits containing as many as four billion (4,000,000,000) gates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved effective capacitance computations for use in logic and layout optimization Assignment and reordering of incompletely specified pattern sequences targetting minimum power dissipation FzCRITIC-a functional timing verifier using a novel fuzzy delay model Verifying Tomasulo's algorithm by refinement Superscalar processor validation at the microarchitecture level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1