基于AIS数据流的海上航路预测单元格结构

Ciprian Amariei, Paul Diac, Emanuel Onica, Valentin Rosca
{"title":"基于AIS数据流的海上航路预测单元格结构","authors":"Ciprian Amariei, Paul Diac, Emanuel Onica, Valentin Rosca","doi":"10.1145/3210284.3220503","DOIUrl":null,"url":null,"abstract":"The 2018 Grand Challenge targets the problem of accurate predictions on data streams produced by automatic identification system (AIS) equipment, describing naval traffic. This paper reports the technical details of a custom solution, which exposes multiple tuning parameters, making its configurability one of the main strengths. Our solution employs a cell grid architecture essentially based on a sequence of hash tables, specifically built for the targeted use case. This makes it particularly effective in prediction on AIS data, obtaining a high accuracy and scalable performance results. Moreover, the architecture proposed accommodates also an optionally semi-supervised learning process besides the basic supervised mode.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"334 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cell Grid Architecture for Maritime Route Prediction on AIS Data Streams\",\"authors\":\"Ciprian Amariei, Paul Diac, Emanuel Onica, Valentin Rosca\",\"doi\":\"10.1145/3210284.3220503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 2018 Grand Challenge targets the problem of accurate predictions on data streams produced by automatic identification system (AIS) equipment, describing naval traffic. This paper reports the technical details of a custom solution, which exposes multiple tuning parameters, making its configurability one of the main strengths. Our solution employs a cell grid architecture essentially based on a sequence of hash tables, specifically built for the targeted use case. This makes it particularly effective in prediction on AIS data, obtaining a high accuracy and scalable performance results. Moreover, the architecture proposed accommodates also an optionally semi-supervised learning process besides the basic supervised mode.\",\"PeriodicalId\":412438,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"334 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3210284.3220503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3220503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

2018年大挑战的目标是对描述海上交通的自动识别系统(AIS)设备产生的数据流进行准确预测。本文报告了自定义解决方案的技术细节,该解决方案公开了多个调优参数,使其可配置性成为主要优势之一。我们的解决方案采用了基于哈希表序列的单元格架构,专门为目标用例构建。这使得它在AIS数据预测中特别有效,获得高精度和可扩展的性能结果。此外,所提出的架构除了基本的监督模式外,还可容纳可选的半监督学习过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell Grid Architecture for Maritime Route Prediction on AIS Data Streams
The 2018 Grand Challenge targets the problem of accurate predictions on data streams produced by automatic identification system (AIS) equipment, describing naval traffic. This paper reports the technical details of a custom solution, which exposes multiple tuning parameters, making its configurability one of the main strengths. Our solution employs a cell grid architecture essentially based on a sequence of hash tables, specifically built for the targeted use case. This makes it particularly effective in prediction on AIS data, obtaining a high accuracy and scalable performance results. Moreover, the architecture proposed accommodates also an optionally semi-supervised learning process besides the basic supervised mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vessel Trajectory Prediction using Sequence-to-Sequence Models over Spatial Grid MtDetector Predicting Destinations by Nearest Neighbor Search on Training Vessel Routes Venilia, On-line Learning and Prediction of Vessel Destination Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1