一种智能碳化硅功率模块,具有通过Wi-Fi进行脉宽调制和支持无线功率传输的栅极驱动器,具有板载健康状态估计器和高压缩放功能

F. Khan, Sarwar Islam, J. Major, Adil Usman, G. Moreno, S. Narumanchi
{"title":"一种智能碳化硅功率模块,具有通过Wi-Fi进行脉宽调制和支持无线功率传输的栅极驱动器,具有板载健康状态估计器和高压缩放功能","authors":"F. Khan, Sarwar Islam, J. Major, Adil Usman, G. Moreno, S. Narumanchi","doi":"10.1109/APEC43580.2023.10131317","DOIUrl":null,"url":null,"abstract":"A wide range of utility applications require controllable switches with features such as high-voltage blocking and high-current carrying capacity, especially at high pulse width modulation (PWM) frequency. Low- and medium-voltage utility applications such as motor drives and flexible AC transmission systems as well as solid state transformers could also benefit from a low-cost high-voltage switching module. Wide-bandgap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) metal oxide semiconductor field effect transistors (MOSFETs) are considered to be the present and next-generation device choices, although they have limitations. For relatively high-voltage applications with demanding thermal management, SiC is still the only choice, and GaN dominates the low-voltage regime. This manuscript proposes a new half-bridge power MOSFET module that is suitable for conventional H-bridge of multilevel configurations used in high-voltage applications. Constructed from bare SiC dies, this half-bridge module takes advantage of (1) optimized MOSFET placement inside the module, (2) customized heat exchanger, manifold, and cooling, (3) integrated gate driver module with pulse width modulation (PWM) over wi-fi to eliminate the need for low-voltage signals, (4) wireless power transfer (WPT)-enabled gate driver and other ancillary circuits, (5) and the option to incorporate an onboard state-of-health (SOH) estimator module. The entire architecture has been designed and built at the National Renewable Energy Laboratory (NREL) in Golden, CO.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Smart Silicon Carbide Power Module With Pulse Width Modulation Over Wi-Fi and Wireless Power Transfer-Enabled Gate Driver, Featuring Onboard State of Health Estimator and High-Voltage Scaling Capabilities\",\"authors\":\"F. Khan, Sarwar Islam, J. Major, Adil Usman, G. Moreno, S. Narumanchi\",\"doi\":\"10.1109/APEC43580.2023.10131317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide range of utility applications require controllable switches with features such as high-voltage blocking and high-current carrying capacity, especially at high pulse width modulation (PWM) frequency. Low- and medium-voltage utility applications such as motor drives and flexible AC transmission systems as well as solid state transformers could also benefit from a low-cost high-voltage switching module. Wide-bandgap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) metal oxide semiconductor field effect transistors (MOSFETs) are considered to be the present and next-generation device choices, although they have limitations. For relatively high-voltage applications with demanding thermal management, SiC is still the only choice, and GaN dominates the low-voltage regime. This manuscript proposes a new half-bridge power MOSFET module that is suitable for conventional H-bridge of multilevel configurations used in high-voltage applications. Constructed from bare SiC dies, this half-bridge module takes advantage of (1) optimized MOSFET placement inside the module, (2) customized heat exchanger, manifold, and cooling, (3) integrated gate driver module with pulse width modulation (PWM) over wi-fi to eliminate the need for low-voltage signals, (4) wireless power transfer (WPT)-enabled gate driver and other ancillary circuits, (5) and the option to incorporate an onboard state-of-health (SOH) estimator module. The entire architecture has been designed and built at the National Renewable Energy Laboratory (NREL) in Golden, CO.\",\"PeriodicalId\":151216,\"journal\":{\"name\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC43580.2023.10131317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广泛的公用事业应用需要具有高电压阻塞和大电流承载能力等特性的可控开关,特别是在高脉宽调制(PWM)频率下。低压和中压公用事业应用,如电机驱动和灵活的交流传输系统以及固态变压器也可以受益于低成本的高压开关模块。宽带隙半导体,如碳化硅(SiC)和氮化镓(GaN)金属氧化物半导体场效应晶体管(mosfet)被认为是当前和下一代器件的选择,尽管它们有局限性。对于要求热管理的相对高压应用,SiC仍然是唯一的选择,而GaN在低压状态下占主导地位。本文提出了一种新的半桥功率MOSFET模块,适用于高压应用中传统的h桥多电平配置。该半桥式模块由裸SiC芯片构成,具有以下优点:(1)优化的MOSFET放置在模块内;(2)定制的热交换器、集成管和冷却;(3)集成栅极驱动模块,通过wi-fi进行脉宽调制(PWM),以消除对低压信号的需求;(4)支持无线功率传输(WPT)的栅极驱动器和其他辅助电路;(5)以及集成板载健康状态(SOH)估计器模块的选项。整个建筑是在科罗拉多州戈尔登市的国家可再生能源实验室(NREL)设计和建造的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Smart Silicon Carbide Power Module With Pulse Width Modulation Over Wi-Fi and Wireless Power Transfer-Enabled Gate Driver, Featuring Onboard State of Health Estimator and High-Voltage Scaling Capabilities
A wide range of utility applications require controllable switches with features such as high-voltage blocking and high-current carrying capacity, especially at high pulse width modulation (PWM) frequency. Low- and medium-voltage utility applications such as motor drives and flexible AC transmission systems as well as solid state transformers could also benefit from a low-cost high-voltage switching module. Wide-bandgap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) metal oxide semiconductor field effect transistors (MOSFETs) are considered to be the present and next-generation device choices, although they have limitations. For relatively high-voltage applications with demanding thermal management, SiC is still the only choice, and GaN dominates the low-voltage regime. This manuscript proposes a new half-bridge power MOSFET module that is suitable for conventional H-bridge of multilevel configurations used in high-voltage applications. Constructed from bare SiC dies, this half-bridge module takes advantage of (1) optimized MOSFET placement inside the module, (2) customized heat exchanger, manifold, and cooling, (3) integrated gate driver module with pulse width modulation (PWM) over wi-fi to eliminate the need for low-voltage signals, (4) wireless power transfer (WPT)-enabled gate driver and other ancillary circuits, (5) and the option to incorporate an onboard state-of-health (SOH) estimator module. The entire architecture has been designed and built at the National Renewable Energy Laboratory (NREL) in Golden, CO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Front-end Monitoring Scheme for Inductive Power Transfer Systems Based on Random Forest Regression An MPC based Power Management Method for Renewable Energy Hydrogen based DC Microgrids Overview of Machine Learning-Enabled Battery State Estimation Methods Ultra-Wideband Unidirectional Reset-Less Rogowski Coil Switch Current Sensor Topology for High-Frequency DC-DC Power Converters Common Source Inductance Compensation Technique for Dynamic Current Balancing in SiC MOSFETs Parallel Operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1