矿物杂质对煤层危险性质表现的影响

Y. Rudniev, M. Antoshchenko, E. Filatieva, J. Romanchenko
{"title":"矿物杂质对煤层危险性质表现的影响","authors":"Y. Rudniev, M. Antoshchenko, E. Filatieva, J. Romanchenko","doi":"10.31474/1999-981x-2021-2-85-95","DOIUrl":null,"url":null,"abstract":"Purpose: to establish a possible correspondence between metamorphic processes with artificial thermal destruction of coals and their ashing in order to identify the components of mineral impurities that can affect the manifestation of the hazardous properties of coal mine seams. Methodology is based on a comparison of metamorphic processes that took place at a certain temperature mode in the bowels of the Earth and the production of artificial coals and their ashing. Results: The research made it possible to reveal the important role of mineral impurities in the formation of the hazardous properties of coal seams. This is due to both the significant possible content of mineral impurities in fossil coals, and the simultaneous presence of the main components that determine the hazardous properties of coal seams (carbon, hydrogen, sulfur, oxygen and moisture), both in the organic and in the mineral parts of fossil coals. To improve the regulatory framework for the safe conduct of mining operations, it is necessary to take into account features of the properties of fossil coals due to the presence of mineral impurities in them. In modern regulatory documents on the safe conduct of mining operations, in general, several indicators are used without proper scientific justification: the mass yield of volatiles during the thermal decomposition of coal, the volumetric yield of volatile substances, the thickness of the plastic layer and the logarithm of the electrical resistivity of anthracites. Their values are related to the dry ash-free mass of organic matter only. This excludes consideration of the influence of mineral impurities on the manifestation of the hazardous properties of coal mine seams during mining operations. In many cases, the content of moisture and sulfur is a criterion for the manifestation of hazardous properties of coal seams. They belong to the integral components of both organic and mineral constituents of fossil coals. The share of mineral impurities in the coals of individual coal seams can be more than 40%. The presence of oxygen, hydrogen, sulfur and moisture in mineral impurities significantly affects the manifestation of the hazardous properties of coal seams during mining. The content of mineral impurities in fossil coals in engineering calculations can be determined on the basis of the ash content of coals according to known empirical relationships, corrected for the content of total sulfur and, in some cases, carbon dioxide. Scientific novelty: the significant influence of mineral impurities in fossil coals on the manifestation of hazardous properties of coal seams during mining operations has been proved. Practical value: the results obtained allow substantiating the methodology for the combined use of the composition of organic and mineral components of fossil coals for a reliable forecast of the manifestation of hazardous properties of coal seams and improving the regulatory framework for their safe mining.","PeriodicalId":344647,"journal":{"name":"JOURNAL of Donetsk mining institute","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE INFLUENCE OF MINERAL IMPURITIES ON THE MANIFESTATION OF DANGEROUS PROPERTIES OF COAL SEAMS\",\"authors\":\"Y. Rudniev, M. Antoshchenko, E. Filatieva, J. Romanchenko\",\"doi\":\"10.31474/1999-981x-2021-2-85-95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: to establish a possible correspondence between metamorphic processes with artificial thermal destruction of coals and their ashing in order to identify the components of mineral impurities that can affect the manifestation of the hazardous properties of coal mine seams. Methodology is based on a comparison of metamorphic processes that took place at a certain temperature mode in the bowels of the Earth and the production of artificial coals and their ashing. Results: The research made it possible to reveal the important role of mineral impurities in the formation of the hazardous properties of coal seams. This is due to both the significant possible content of mineral impurities in fossil coals, and the simultaneous presence of the main components that determine the hazardous properties of coal seams (carbon, hydrogen, sulfur, oxygen and moisture), both in the organic and in the mineral parts of fossil coals. To improve the regulatory framework for the safe conduct of mining operations, it is necessary to take into account features of the properties of fossil coals due to the presence of mineral impurities in them. In modern regulatory documents on the safe conduct of mining operations, in general, several indicators are used without proper scientific justification: the mass yield of volatiles during the thermal decomposition of coal, the volumetric yield of volatile substances, the thickness of the plastic layer and the logarithm of the electrical resistivity of anthracites. Their values are related to the dry ash-free mass of organic matter only. This excludes consideration of the influence of mineral impurities on the manifestation of the hazardous properties of coal mine seams during mining operations. In many cases, the content of moisture and sulfur is a criterion for the manifestation of hazardous properties of coal seams. They belong to the integral components of both organic and mineral constituents of fossil coals. The share of mineral impurities in the coals of individual coal seams can be more than 40%. The presence of oxygen, hydrogen, sulfur and moisture in mineral impurities significantly affects the manifestation of the hazardous properties of coal seams during mining. The content of mineral impurities in fossil coals in engineering calculations can be determined on the basis of the ash content of coals according to known empirical relationships, corrected for the content of total sulfur and, in some cases, carbon dioxide. Scientific novelty: the significant influence of mineral impurities in fossil coals on the manifestation of hazardous properties of coal seams during mining operations has been proved. Practical value: the results obtained allow substantiating the methodology for the combined use of the composition of organic and mineral components of fossil coals for a reliable forecast of the manifestation of hazardous properties of coal seams and improving the regulatory framework for their safe mining.\",\"PeriodicalId\":344647,\"journal\":{\"name\":\"JOURNAL of Donetsk mining institute\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL of Donetsk mining institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31474/1999-981x-2021-2-85-95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL of Donetsk mining institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31474/1999-981x-2021-2-85-95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:建立人工热破坏煤的变质过程与其灰化过程之间可能的对应关系,以识别影响煤层危险性质表现的矿物杂质成分。方法是基于在地球内部某一温度模式下发生的变质过程与人工煤的产生及其灰化的比较。结果:揭示了矿物杂质在煤层危险性质形成中的重要作用。这是由于化石煤中可能含有大量矿物杂质,同时在化石煤的有机部分和矿物部分中同时存在决定煤层危险特性的主要成分(碳、氢、硫、氧和水分)。为了改善安全进行采矿作业的监管框架,必须考虑到由于矿物杂质的存在而导致的化石煤的特性特征。在关于采矿作业安全进行的现代规范性文件中,一般来说,在没有适当科学依据的情况下使用了几个指标:煤热分解过程中挥发物的质量产率、挥发物的体积产率、塑料层的厚度和无烟煤电阻率的对数。它们的值只与有机质的干无灰质量有关。这还不包括采矿作业中矿物杂质对煤层危险特性表现的影响。在许多情况下,水分和硫的含量是煤层危险性质表现的一个判据。它们属于化石煤的有机成分和矿物成分的组成部分。单个煤层煤中矿物杂质的含量可达40%以上。在开采过程中,矿物杂质中氧、氢、硫和水分的存在对煤层危险性质的表现有重要影响。在工程计算中,可以根据已知的经验关系,根据煤的灰分含量来确定化石煤中矿物杂质的含量,并根据总硫含量和某些情况下的二氧化碳含量进行校正。科学新颖性:证明了化石煤中矿物杂质对开采过程中煤层危险特性表现的显著影响。实用价值:所获得的结果证实了结合使用化石煤的有机和矿物成分组成的方法,以可靠地预测煤层危险特性的表现,并改善其安全开采的监管框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ON THE INFLUENCE OF MINERAL IMPURITIES ON THE MANIFESTATION OF DANGEROUS PROPERTIES OF COAL SEAMS
Purpose: to establish a possible correspondence between metamorphic processes with artificial thermal destruction of coals and their ashing in order to identify the components of mineral impurities that can affect the manifestation of the hazardous properties of coal mine seams. Methodology is based on a comparison of metamorphic processes that took place at a certain temperature mode in the bowels of the Earth and the production of artificial coals and their ashing. Results: The research made it possible to reveal the important role of mineral impurities in the formation of the hazardous properties of coal seams. This is due to both the significant possible content of mineral impurities in fossil coals, and the simultaneous presence of the main components that determine the hazardous properties of coal seams (carbon, hydrogen, sulfur, oxygen and moisture), both in the organic and in the mineral parts of fossil coals. To improve the regulatory framework for the safe conduct of mining operations, it is necessary to take into account features of the properties of fossil coals due to the presence of mineral impurities in them. In modern regulatory documents on the safe conduct of mining operations, in general, several indicators are used without proper scientific justification: the mass yield of volatiles during the thermal decomposition of coal, the volumetric yield of volatile substances, the thickness of the plastic layer and the logarithm of the electrical resistivity of anthracites. Their values are related to the dry ash-free mass of organic matter only. This excludes consideration of the influence of mineral impurities on the manifestation of the hazardous properties of coal mine seams during mining operations. In many cases, the content of moisture and sulfur is a criterion for the manifestation of hazardous properties of coal seams. They belong to the integral components of both organic and mineral constituents of fossil coals. The share of mineral impurities in the coals of individual coal seams can be more than 40%. The presence of oxygen, hydrogen, sulfur and moisture in mineral impurities significantly affects the manifestation of the hazardous properties of coal seams during mining. The content of mineral impurities in fossil coals in engineering calculations can be determined on the basis of the ash content of coals according to known empirical relationships, corrected for the content of total sulfur and, in some cases, carbon dioxide. Scientific novelty: the significant influence of mineral impurities in fossil coals on the manifestation of hazardous properties of coal seams during mining operations has been proved. Practical value: the results obtained allow substantiating the methodology for the combined use of the composition of organic and mineral components of fossil coals for a reliable forecast of the manifestation of hazardous properties of coal seams and improving the regulatory framework for their safe mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TRENDS IN THE DEVELOPMENT OF REACTIVE FIRE PROTECTION (LITERATURE REVIEW) STATISTICAL MODELS OF THE CLASSIFICATION INDICATOR OF THE DEGREE OF COAL METAMORPHISM FOR THE FORECAST OF DANGEROUS PROPERTIES OF COAL BEDS ANALYSIS OF PRODUCTION RISK FROM CRUSHES OF ROCKS AT EXCAVATION SITES, TAKING INTO ACCOUNT WAYS OF PROTECTION INTEGRATED RISK ASSESSMENT IN COAL MINING VENTING, REMOTE AIR SAMPLING AND MONITORING OF AIR QUALITY IN BLASTED MINING EXCAVATIONS: CURRENT PROBLEMS AND SOLUTIONS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1