二锂在mpsoc临界环境中的超加速

Martha Johanna Sepúlveda, Dominik Winkler
{"title":"二锂在mpsoc临界环境中的超加速","authors":"Martha Johanna Sepúlveda, Dominik Winkler","doi":"10.1109/ETS54262.2022.9810468","DOIUrl":null,"url":null,"abstract":"Digital signature is a key security technology for authenticating systems and devices, thus enabling the existence of wide collaborative environments. This is also true for safety-critical systems that are constrained by strict performance requirements. Such applications are usually implemented through Multi-processors System-on-Chip (MPSoC). The dawn of quantum computing represents a threat for current cryptography, including the digital signatures. In order to prepare for such an event, electronic systems must integrate quantum-secure (post-quantum) cryptography. Dilithium is one of the main alternatives for practical implementation of post-quantum signatures. While most of the attention has been given to the security analysis and single-core software implementation, the Dilithium MPSoC exploration for high performance has been neglected. To this end, this work presents two contributions. First, the design and exploration of optimized Dilithium multi-core implementations. Second, the deployment of Dilithium on real life MPSoCs used in automotive applications and operated with a commercial RTOS. Results show that Dilithium can be efficiently implemented and optimized on a multicore architecture, improving the performance up to 48% for key generation, 34% for signature and 42% for verification when compared to single core solutions.","PeriodicalId":334931,"journal":{"name":"2022 IEEE European Test Symposium (ETS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Super Acceleration of Dilithium in MPSoCs Critical Environments\",\"authors\":\"Martha Johanna Sepúlveda, Dominik Winkler\",\"doi\":\"10.1109/ETS54262.2022.9810468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital signature is a key security technology for authenticating systems and devices, thus enabling the existence of wide collaborative environments. This is also true for safety-critical systems that are constrained by strict performance requirements. Such applications are usually implemented through Multi-processors System-on-Chip (MPSoC). The dawn of quantum computing represents a threat for current cryptography, including the digital signatures. In order to prepare for such an event, electronic systems must integrate quantum-secure (post-quantum) cryptography. Dilithium is one of the main alternatives for practical implementation of post-quantum signatures. While most of the attention has been given to the security analysis and single-core software implementation, the Dilithium MPSoC exploration for high performance has been neglected. To this end, this work presents two contributions. First, the design and exploration of optimized Dilithium multi-core implementations. Second, the deployment of Dilithium on real life MPSoCs used in automotive applications and operated with a commercial RTOS. Results show that Dilithium can be efficiently implemented and optimized on a multicore architecture, improving the performance up to 48% for key generation, 34% for signature and 42% for verification when compared to single core solutions.\",\"PeriodicalId\":334931,\"journal\":{\"name\":\"2022 IEEE European Test Symposium (ETS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS54262.2022.9810468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS54262.2022.9810468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数字签名是对系统和设备进行身份验证的关键安全技术,从而实现了广泛协作环境的存在。对于受严格性能要求约束的安全关键型系统也是如此。这种应用通常是通过多处理器片上系统(MPSoC)实现的。量子计算的曙光对当前的密码学(包括数字签名)构成了威胁。为了应对这样的事件,电子系统必须集成量子安全(后量子)加密技术。二锂是实际实现后量子特征的主要替代品之一。虽然大多数注意力都集中在安全性分析和单核软件实现上,但对高性能的探索却被忽视了。为此,本工作提出了两个贡献。首先,优化的锂多核实现的设计与探索。其次,在汽车应用的实际mpsoc上部署锂,并与商业RTOS一起操作。结果表明,diliium可以在多核架构上有效地实现和优化,与单核解决方案相比,密钥生成性能提高48%,签名性能提高34%,验证性能提高42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super Acceleration of Dilithium in MPSoCs Critical Environments
Digital signature is a key security technology for authenticating systems and devices, thus enabling the existence of wide collaborative environments. This is also true for safety-critical systems that are constrained by strict performance requirements. Such applications are usually implemented through Multi-processors System-on-Chip (MPSoC). The dawn of quantum computing represents a threat for current cryptography, including the digital signatures. In order to prepare for such an event, electronic systems must integrate quantum-secure (post-quantum) cryptography. Dilithium is one of the main alternatives for practical implementation of post-quantum signatures. While most of the attention has been given to the security analysis and single-core software implementation, the Dilithium MPSoC exploration for high performance has been neglected. To this end, this work presents two contributions. First, the design and exploration of optimized Dilithium multi-core implementations. Second, the deployment of Dilithium on real life MPSoCs used in automotive applications and operated with a commercial RTOS. Results show that Dilithium can be efficiently implemented and optimized on a multicore architecture, improving the performance up to 48% for key generation, 34% for signature and 42% for verification when compared to single core solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AMS Test Vector Generation using AMS Verification and IEEE P1687.2 X-Masking for In-System Deterministic Test DFX: Exploring the Design Space for Quality ETS 2022 Foreword TaintLock: Preventing IP Theft through Lightweight Dynamic Scan Encryption using Taint Bits*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1