{"title":"二锂在mpsoc临界环境中的超加速","authors":"Martha Johanna Sepúlveda, Dominik Winkler","doi":"10.1109/ETS54262.2022.9810468","DOIUrl":null,"url":null,"abstract":"Digital signature is a key security technology for authenticating systems and devices, thus enabling the existence of wide collaborative environments. This is also true for safety-critical systems that are constrained by strict performance requirements. Such applications are usually implemented through Multi-processors System-on-Chip (MPSoC). The dawn of quantum computing represents a threat for current cryptography, including the digital signatures. In order to prepare for such an event, electronic systems must integrate quantum-secure (post-quantum) cryptography. Dilithium is one of the main alternatives for practical implementation of post-quantum signatures. While most of the attention has been given to the security analysis and single-core software implementation, the Dilithium MPSoC exploration for high performance has been neglected. To this end, this work presents two contributions. First, the design and exploration of optimized Dilithium multi-core implementations. Second, the deployment of Dilithium on real life MPSoCs used in automotive applications and operated with a commercial RTOS. Results show that Dilithium can be efficiently implemented and optimized on a multicore architecture, improving the performance up to 48% for key generation, 34% for signature and 42% for verification when compared to single core solutions.","PeriodicalId":334931,"journal":{"name":"2022 IEEE European Test Symposium (ETS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Super Acceleration of Dilithium in MPSoCs Critical Environments\",\"authors\":\"Martha Johanna Sepúlveda, Dominik Winkler\",\"doi\":\"10.1109/ETS54262.2022.9810468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital signature is a key security technology for authenticating systems and devices, thus enabling the existence of wide collaborative environments. This is also true for safety-critical systems that are constrained by strict performance requirements. Such applications are usually implemented through Multi-processors System-on-Chip (MPSoC). The dawn of quantum computing represents a threat for current cryptography, including the digital signatures. In order to prepare for such an event, electronic systems must integrate quantum-secure (post-quantum) cryptography. Dilithium is one of the main alternatives for practical implementation of post-quantum signatures. While most of the attention has been given to the security analysis and single-core software implementation, the Dilithium MPSoC exploration for high performance has been neglected. To this end, this work presents two contributions. First, the design and exploration of optimized Dilithium multi-core implementations. Second, the deployment of Dilithium on real life MPSoCs used in automotive applications and operated with a commercial RTOS. Results show that Dilithium can be efficiently implemented and optimized on a multicore architecture, improving the performance up to 48% for key generation, 34% for signature and 42% for verification when compared to single core solutions.\",\"PeriodicalId\":334931,\"journal\":{\"name\":\"2022 IEEE European Test Symposium (ETS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS54262.2022.9810468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS54262.2022.9810468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Super Acceleration of Dilithium in MPSoCs Critical Environments
Digital signature is a key security technology for authenticating systems and devices, thus enabling the existence of wide collaborative environments. This is also true for safety-critical systems that are constrained by strict performance requirements. Such applications are usually implemented through Multi-processors System-on-Chip (MPSoC). The dawn of quantum computing represents a threat for current cryptography, including the digital signatures. In order to prepare for such an event, electronic systems must integrate quantum-secure (post-quantum) cryptography. Dilithium is one of the main alternatives for practical implementation of post-quantum signatures. While most of the attention has been given to the security analysis and single-core software implementation, the Dilithium MPSoC exploration for high performance has been neglected. To this end, this work presents two contributions. First, the design and exploration of optimized Dilithium multi-core implementations. Second, the deployment of Dilithium on real life MPSoCs used in automotive applications and operated with a commercial RTOS. Results show that Dilithium can be efficiently implemented and optimized on a multicore architecture, improving the performance up to 48% for key generation, 34% for signature and 42% for verification when compared to single core solutions.