{"title":"基于广义最小-最大分类器的乐器识别","authors":"G. Costantini, A. Rizzi, D. Casali","doi":"10.1109/NNSP.2003.1318055","DOIUrl":null,"url":null,"abstract":"The correct classification of single musical sources is a relevant aspect for the source separation task and the automatic transcription of polyphonic music. In this paper, we deal with a classification problem concerning the recognition of six different musical instruments: violin, clarinet, flute, oboe, saxophone and piano. A satisfactory solution of such a recognition problem depends mainly on both the preprocessing procedure (set of features extracted from row data) and the adopted classification system. As concerns feature extraction, a suitable signal preprocessing based on FFT, QFT (Q-constant frequency transform) and cepstrum coefficients are employed. We adopt min-max neurofuzzy networks as the classification model, both in their classical and generalized version. The synthesis of these classifiers is performed by the adaptive resolution training technique (ARC, PARC and GPARC algorithms), since it assures good performances and an excellent automation degree.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Recognition of musical instruments by generalized min-max classifiers\",\"authors\":\"G. Costantini, A. Rizzi, D. Casali\",\"doi\":\"10.1109/NNSP.2003.1318055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The correct classification of single musical sources is a relevant aspect for the source separation task and the automatic transcription of polyphonic music. In this paper, we deal with a classification problem concerning the recognition of six different musical instruments: violin, clarinet, flute, oboe, saxophone and piano. A satisfactory solution of such a recognition problem depends mainly on both the preprocessing procedure (set of features extracted from row data) and the adopted classification system. As concerns feature extraction, a suitable signal preprocessing based on FFT, QFT (Q-constant frequency transform) and cepstrum coefficients are employed. We adopt min-max neurofuzzy networks as the classification model, both in their classical and generalized version. The synthesis of these classifiers is performed by the adaptive resolution training technique (ARC, PARC and GPARC algorithms), since it assures good performances and an excellent automation degree.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
单一音源的正确分类是音源分离任务和复调音乐自动转写的一个相关方面。本文研究了小提琴、单簧管、长笛、双簧管、萨克斯管和钢琴六种不同乐器的分类问题。这种识别问题的满意解决方案主要取决于预处理程序(从行数据中提取的特征集)和所采用的分类系统。在特征提取方面,采用了基于FFT、QFT (Q-constant frequency transform)和倒谱系数的信号预处理。我们采用最小-最大神经模糊网络作为分类模型,包括经典模型和广义模型。这些分类器的综合是通过自适应分辨率训练技术(ARC, PARC和GPARC算法)进行的,因为它保证了良好的性能和良好的自动化程度。
Recognition of musical instruments by generalized min-max classifiers
The correct classification of single musical sources is a relevant aspect for the source separation task and the automatic transcription of polyphonic music. In this paper, we deal with a classification problem concerning the recognition of six different musical instruments: violin, clarinet, flute, oboe, saxophone and piano. A satisfactory solution of such a recognition problem depends mainly on both the preprocessing procedure (set of features extracted from row data) and the adopted classification system. As concerns feature extraction, a suitable signal preprocessing based on FFT, QFT (Q-constant frequency transform) and cepstrum coefficients are employed. We adopt min-max neurofuzzy networks as the classification model, both in their classical and generalized version. The synthesis of these classifiers is performed by the adaptive resolution training technique (ARC, PARC and GPARC algorithms), since it assures good performances and an excellent automation degree.