32纳米及以上CMOS技术的发展

G. Shahidi
{"title":"32纳米及以上CMOS技术的发展","authors":"G. Shahidi","doi":"10.1109/CICC.2007.4405764","DOIUrl":null,"url":null,"abstract":"Over the last 15 years, there has been a new CMOS technology node approximately every two years. The key feature of every node has been 2X density shrink and ~35% performance gain per technology node. Chip power has been increasing rapidly, approaching air cool limit. Power limit is transforming CMOS scaling to more of a density driver. As we move to 32 nm node and beyond a number of additional fundamental challenges are faced, which may force additional rethinking of how scaling has been done. This paper is an overview of some upcoming challenges and possible ways of addressing them.","PeriodicalId":130106,"journal":{"name":"2007 IEEE Custom Integrated Circuits Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Evolution of CMOS Technology at 32 nm and Beyond\",\"authors\":\"G. Shahidi\",\"doi\":\"10.1109/CICC.2007.4405764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last 15 years, there has been a new CMOS technology node approximately every two years. The key feature of every node has been 2X density shrink and ~35% performance gain per technology node. Chip power has been increasing rapidly, approaching air cool limit. Power limit is transforming CMOS scaling to more of a density driver. As we move to 32 nm node and beyond a number of additional fundamental challenges are faced, which may force additional rethinking of how scaling has been done. This paper is an overview of some upcoming challenges and possible ways of addressing them.\",\"PeriodicalId\":130106,\"journal\":{\"name\":\"2007 IEEE Custom Integrated Circuits Conference\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Custom Integrated Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2007.4405764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2007.4405764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在过去的15年里,大约每两年就有一个新的CMOS技术节点。每个节点的主要特点是每个技术节点的密度缩小了2倍,性能提高了35%。芯片功率一直在快速增长,接近风冷极限。功率限制正在将CMOS缩放转变为更多的密度驱动器。当我们移动到32nm节点及以后,将面临许多额外的基本挑战,这可能迫使我们重新思考如何进行缩放。本文概述了一些即将面临的挑战以及解决这些挑战的可能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of CMOS Technology at 32 nm and Beyond
Over the last 15 years, there has been a new CMOS technology node approximately every two years. The key feature of every node has been 2X density shrink and ~35% performance gain per technology node. Chip power has been increasing rapidly, approaching air cool limit. Power limit is transforming CMOS scaling to more of a density driver. As we move to 32 nm node and beyond a number of additional fundamental challenges are faced, which may force additional rethinking of how scaling has been done. This paper is an overview of some upcoming challenges and possible ways of addressing them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Real-Time Feedback Controlled Hearing Aid Chip with Reference Ear Model An 81.6 GOPS Object Recognition Processor Based on NoC and Visual Image Processing Memory A Time-Interleaved Track & hold in 0.13 μm CMOS sub-sampling a 4 GHz signal with 43 dB SNDR Low-Power CMOS Energy Detection Transceiver for UWB Impulse Radio System An Embedded 8-bit RISC Controller for Yield Enhancement of the 90-nm PRAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1