T. Kaneko, N. Minh-Dung, P. Quang-Khang, Y. Takei, T. Takahata, K. Matsumoto, I. Shimoyama
{"title":"用压阻式悬臂梁对液体进行人体脉搏波测量","authors":"T. Kaneko, N. Minh-Dung, P. Quang-Khang, Y. Takei, T. Takahata, K. Matsumoto, I. Shimoyama","doi":"10.1109/MEMSYS.2015.7051046","DOIUrl":null,"url":null,"abstract":"We propose a device that can measure pulse waves at various points on human body with high sensitivity. Pulse wave velocity was calculated from a synchronized pulse wave measurement on two points. The device had a piezoresistive cantilever placed on silicone oil. The cantilever with oil was embedded in polydimethylsiloxane (PDMS). Pressure waves from arteries can be well conveyed to the cantilever, for the human-skin-like acoustic impedance of the silicone oil and PDMS. The signal to noise ratio of the device was ~80 dB in 10-100 Hz, when excited ~1 μm in displacement.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Pulse wave measurement in human using piezoresistive cantilever on liquid\",\"authors\":\"T. Kaneko, N. Minh-Dung, P. Quang-Khang, Y. Takei, T. Takahata, K. Matsumoto, I. Shimoyama\",\"doi\":\"10.1109/MEMSYS.2015.7051046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a device that can measure pulse waves at various points on human body with high sensitivity. Pulse wave velocity was calculated from a synchronized pulse wave measurement on two points. The device had a piezoresistive cantilever placed on silicone oil. The cantilever with oil was embedded in polydimethylsiloxane (PDMS). Pressure waves from arteries can be well conveyed to the cantilever, for the human-skin-like acoustic impedance of the silicone oil and PDMS. The signal to noise ratio of the device was ~80 dB in 10-100 Hz, when excited ~1 μm in displacement.\",\"PeriodicalId\":337894,\"journal\":{\"name\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2015.7051046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7051046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pulse wave measurement in human using piezoresistive cantilever on liquid
We propose a device that can measure pulse waves at various points on human body with high sensitivity. Pulse wave velocity was calculated from a synchronized pulse wave measurement on two points. The device had a piezoresistive cantilever placed on silicone oil. The cantilever with oil was embedded in polydimethylsiloxane (PDMS). Pressure waves from arteries can be well conveyed to the cantilever, for the human-skin-like acoustic impedance of the silicone oil and PDMS. The signal to noise ratio of the device was ~80 dB in 10-100 Hz, when excited ~1 μm in displacement.