投影矩阵上的梯度流用于子空间估计

A. Srivastava, D. Fuhrmann
{"title":"投影矩阵上的梯度流用于子空间估计","authors":"A. Srivastava, D. Fuhrmann","doi":"10.1109/ACSSC.1997.679117","DOIUrl":null,"url":null,"abstract":"Estimation of dynamic subspaces is important in blind-channel identification for multiuser wireless communications and active computer vision. Mathematically, a subspace can either be parameterized non-uniquely by a linearly-independent basis, or uniquely, by a projection matrix. We present a stochastic gradient technique for optimization on projective representations of subspaces. This technique is intrinsic, i.e. it utilizes the geometry of underlying parameter space (Grassman manifold) and constructs gradient flows on the manifold for local optimization. The addition of a stochastic component to the search process guarantees global minima and a discrete jump component allows for uncertainty in rank of the subspace (simultaneous model order estimation).","PeriodicalId":240431,"journal":{"name":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gradient flows on projection matrices for subspace estimation\",\"authors\":\"A. Srivastava, D. Fuhrmann\",\"doi\":\"10.1109/ACSSC.1997.679117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of dynamic subspaces is important in blind-channel identification for multiuser wireless communications and active computer vision. Mathematically, a subspace can either be parameterized non-uniquely by a linearly-independent basis, or uniquely, by a projection matrix. We present a stochastic gradient technique for optimization on projective representations of subspaces. This technique is intrinsic, i.e. it utilizes the geometry of underlying parameter space (Grassman manifold) and constructs gradient flows on the manifold for local optimization. The addition of a stochastic component to the search process guarantees global minima and a discrete jump component allows for uncertainty in rank of the subspace (simultaneous model order estimation).\",\"PeriodicalId\":240431,\"journal\":{\"name\":\"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1997.679117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1997.679117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

动态子空间估计在多用户无线通信和主动计算机视觉盲信道识别中具有重要意义。在数学上,子空间可以通过线性无关基非唯一地参数化,也可以通过投影矩阵唯一地参数化。我们提出了一种随机梯度技术来优化子空间的射影表示。该技术是固有的,即它利用底层参数空间(格拉斯曼流形)的几何形状,并在流形上构造梯度流以进行局部优化。在搜索过程中添加随机分量保证了全局最小值,而离散跳跃分量允许子空间秩的不确定性(同时模型阶估计)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient flows on projection matrices for subspace estimation
Estimation of dynamic subspaces is important in blind-channel identification for multiuser wireless communications and active computer vision. Mathematically, a subspace can either be parameterized non-uniquely by a linearly-independent basis, or uniquely, by a projection matrix. We present a stochastic gradient technique for optimization on projective representations of subspaces. This technique is intrinsic, i.e. it utilizes the geometry of underlying parameter space (Grassman manifold) and constructs gradient flows on the manifold for local optimization. The addition of a stochastic component to the search process guarantees global minima and a discrete jump component allows for uncertainty in rank of the subspace (simultaneous model order estimation).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparative study of multiple accessing schemes Self-affine modeling of speech signal in speech compression A progressive transmission image coder using linear phase paraunitary filter banks A canonical representation for distributions of adaptive matched subspace detectors Finite length equalization for FFT-based multicarrier systems-an error-whitening viewpoint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1