基于aw - elm的缺血性卒中后克劳奇步态识别

Sahar Adil, Adel Al-Jumaily, K. Anam
{"title":"基于aw - elm的缺血性卒中后克劳奇步态识别","authors":"Sahar Adil, Adel Al-Jumaily, K. Anam","doi":"10.1109/ICEDSA.2016.7818552","DOIUrl":null,"url":null,"abstract":"Crouch Gait (CG) can be observed in the hemiplegia persons after ischemic stroke. Walking with Crouch Gait (CG) shown a large gaits disorder. This paper explores the use of adaptive wavelet extreme learning machine (AW-ELM) to classifying different gait conditions for hemiplegia and healthy subjects. Three participants having a Crouch Gait problem with categories of Mild, Moderate, and Severe gait conditions, also, one Healthy person are used their data in this work. The recognition system extracting number of time and frequency domain features for dimensionality reduction. While for the classification stage, the common Extreme Learning Machine (ELM) classifiers are used. AW-ELM achieved maximum testing accuracy up to 91.149 % and with using majority vote post-processing the accuracy achieves 91.547 %.","PeriodicalId":247318,"journal":{"name":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AW-ELM-based Crouch Gait recognition after ischemic stroke\",\"authors\":\"Sahar Adil, Adel Al-Jumaily, K. Anam\",\"doi\":\"10.1109/ICEDSA.2016.7818552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crouch Gait (CG) can be observed in the hemiplegia persons after ischemic stroke. Walking with Crouch Gait (CG) shown a large gaits disorder. This paper explores the use of adaptive wavelet extreme learning machine (AW-ELM) to classifying different gait conditions for hemiplegia and healthy subjects. Three participants having a Crouch Gait problem with categories of Mild, Moderate, and Severe gait conditions, also, one Healthy person are used their data in this work. The recognition system extracting number of time and frequency domain features for dimensionality reduction. While for the classification stage, the common Extreme Learning Machine (ELM) classifiers are used. AW-ELM achieved maximum testing accuracy up to 91.149 % and with using majority vote post-processing the accuracy achieves 91.547 %.\",\"PeriodicalId\":247318,\"journal\":{\"name\":\"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEDSA.2016.7818552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDSA.2016.7818552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

缺血性脑卒中后偏瘫患者可观察到蹲姿。克劳奇步态(CG)行走表现出较大的步态障碍。本文探讨了利用自适应小波极限学习机(AW-ELM)对偏瘫和健康人不同步态状态进行分类的方法。三名有轻度、中度和重度步态问题的参与者,以及一名健康人在这项工作中使用了他们的数据。该识别系统提取若干时域和频域特征进行降维。而在分类阶段,使用常见的极限学习机(ELM)分类器。AW-ELM的最大测试精度可达91.149%,采用多数投票后处理的准确率可达91.547%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AW-ELM-based Crouch Gait recognition after ischemic stroke
Crouch Gait (CG) can be observed in the hemiplegia persons after ischemic stroke. Walking with Crouch Gait (CG) shown a large gaits disorder. This paper explores the use of adaptive wavelet extreme learning machine (AW-ELM) to classifying different gait conditions for hemiplegia and healthy subjects. Three participants having a Crouch Gait problem with categories of Mild, Moderate, and Severe gait conditions, also, one Healthy person are used their data in this work. The recognition system extracting number of time and frequency domain features for dimensionality reduction. While for the classification stage, the common Extreme Learning Machine (ELM) classifiers are used. AW-ELM achieved maximum testing accuracy up to 91.149 % and with using majority vote post-processing the accuracy achieves 91.547 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise robust speech recognition using parallel model compensation and voice activity detection methods Analysis and design of MIMO antenna for UWB applications based on the super-formula A comparative study up to 1024 bit Euclid's GCD algorithm FPGA implementation and synthesizing On-line measurement of biomass using colloid dielectric probe and open-ended cell. Determination of the aggregation threshold Classification of ECG signals of normal and abnormal subjects using common spatial pattern
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1